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Simultaneous Maximisation in Economic Theory

This document provides translations of two important but neglected articles of Bruno
de Finetti, Problemi di “optimum” and Problemi di “optimum” vincolato, which deal
with the problem of maximising several functions simultaneously.1

Economic theory assumes that the participants in a social exchange economy are ra-
tional, optimising agents. Consumers maximise their utilities, producers maximise
their profits; they all do so subject to whatever constraints are present. Many text-
books on microeconomic theory contain appendices dealing with the mathematical
theory of constrained maximisation of one function (for example Malinvaud, 1972;
Varian, 1992), and several textbooks on optimisation have been written especially for
economists (for example Dixit, 1976, 1990; Léonard and Van Long, 1992).

The typical case in economics is that the actions of each agent affect the outcomes
for all participants. The theory thus results in a mathematical problem in which a
number of functions with the same list of arguments must be simultaneously maximal,
a simultaneous maximum problem for short. Von Neumann and Morgenstern (1947,
Section I.2) argued that, at the time of their writing, mathematical economics had not
dealt adequately with this type of problem. They constructed game theory to remedy
the error, confining their analysis to the case of discrete decision variables that may take
only a finite number of values. A decade earlier De Finetti (1937a,b), motivated by the
work of Pareto, had considered the problem of simultaneously maximising a number
of smooth functions of continuous variables. In fact the notion of simultaneous max-
imum appeared in economics for the first time in Edgeworth’s (1881) Mathematical
Psychics: It is the famous contract curve. But the notion is best known from the work
of Pareto, whence the name of Pareto optimum.2 As the term “Pareto optimum” has
acquired a normative connotation in economics, I prefer the neutral term “simultaneous
maximum” stemming from Zaccagnini (1947, 1951).

De Finetti (1940) himself has applied the notion of simultaneous maximum in his
study of hedging the risk of a set of insurances when determining the optimal retention
levels, which yield the best way of reinsuring parts of the insurances so as to reduce
the risk (as measured by the variance of profit) within the desired limits while min-
imising the loss of mean profit.3 Zaccagnini (1947, 1951) has used the technique of
simultaneous maximisation to solve the oligopoly problem and to derive Edgeworth’s
contract curve. Much later, Smale (1975, 1974b) and others have revisited the subject
of simultaneous maximisation. Smale has applied simultaneous maximisation to the
study of general economic equilibrium using a calculus approach (for example Smale,
1974a, 1976).

A calculus approach to simultaneous maximum problems also clarifies the nature
of the Nash equilibrium. In the simultaneous maximisation of a number of functions,
as in cooperative game theory, all arguments are consistently treated as variables in all

1I am grateful to prof. Pressacco of the University of Udine for checking an earlier version of the transla-
tions and saving me from some errors.

2Pareto (1909, Figure 50, p. 355) represents the contract curve graphically in a figure nowadays called
the “Edgeworth Box.” It would be historically correct to speak of “the Edgeworth optimum in the Pareto
Box” (cf. Hildenbrand, 1993).

3Only recently has this work been recognised as anticipating Markowitz (1952).
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maximands. In non-cooperative game theory, however, the set of arguments is parti-
tioned into a number, one for each maximand, of disjoint subsets; in each maximand,
only the arguments in the associated subset are treated as variables and the other ar-
guments are treated as constants. “First-order conditions” are derived by varying the
arguments in each subset only in the associated maximand and simultaneously holding
them constant in all other maximands. We thus see that non-cooperative game the-
ory splits the simultaneous maximum problem into a number of conditional maximum
problems and, in so doing, disregards the interdependence of the maximum problems.
The solution of the “first-order conditions,” with all arguments now treated as vari-
ables again in the partial first-order derivatives that are included in the system, is the
Nash equilibrium. The inconsistent treatment of the arguments will manifest itself in
contradictory results. The oligopoly problem provides an example (in the literature
not recognised as such) with the Cournot equilibrium’s differing from the Bertrand
equilibrium.4

The economics profession has been slow in adopting the technique of simultaneous
maximisation, witness its absence from the textbooks mentioned above. Still, Smale’s
work is increasingly being appreciated. It is just fair to point out that the first one to see
the importance of simultaneous maximisation for economic theory is Bruno de Finetti.

4One may read Von Neumann and Morgenstern (1947) as arguing that the set of (constrained) maximum
problems defined in mathematical economics ought to be treated as a simultaneous maximum problem, and
Nash (1951) as promoting incorrect conditioning from vice to virtue.
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Appendix A

“Optimum” problems

by B. DE FINETTI∗

ABSTRACT. — The notion of “optimum” as introduced in mathematical economics is clarified both by
numerous examples of a geometrical and physical nature and by a sketch of what might be the systematic
and general treatment of “optimum” problems.

A.1 Introduction
1. In my research in pure economics I have tried to elucidate the very essence of the

notion of “optimum” that plays a role there, by showing how it differs from the usual
notion of “maximum” in <mathematical> analysis. Indeed, this has become clear also
from the works of Pareto, but the fact that he, by immediately adding to the system of
equations expressing the conditions of “optimum” a second one consisting of balance
identities, succeeds in determining a unique “optimum” point seems to have generated
a certain confusion about the conceptual significance of the “optimum” problem. I
think that the difficulty stems largely from the fact that such a notion and such a kind
of problem has presented itself explicitly for the first time in mathematical economics,
while one quite naturally wants to base this theory, the legitimacy of which has even
been questioned, on notions already well-known in other fields, and particularly in
geometry, which allows an intuitive view. In order not to leave the impression that the
notion of “optimum” is some vague or artificial peculiarity of economics, I believe it is
best to present, like I intend to do here, some simple examples of a geometrical nature
that lead to “optimum” problems of the same type. After the treatment of several exam-
ples with direct methods suggested by the cases at hand, we shall study the “optimum”
conditions in general, illustrating them with new examples. Not, incidentally, that it
involves an absolutely new type of problems from an analytical point of view, because
they reduce essentially to problems of “constrained maxima and minima;” however,
they do differ from the latter, conceptually by the typical formulation of the problem

∗Translation of B. de Finetti, Problemi di “optimum”, Giornale dell’Instituto Italiano degli Attuari,
Anno VIII, n. 1, gennaio 1937-XV. I have corrected some misprints and obvious mistakes.
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2 APPENDIX A. “OPTIMUM” PROBLEMS, BY B. DE FINETTI

and analytically because, by consequence, the points of maximum of one function on
the level curves of the other do not solve the problem unless they are simultaneously
points of maximum of the second function on the level curves of the first one.

A.2 Preliminary examples
2. The nine roads along which to go to a given place, in order of decreasing

panoramic value according to the taste of a given individual, are

A B C D E F G H I

and have the lengths in kilometres of respectively

57 59 55 43 50 45 42 48 42

If this individual wishes to choose at once so as to have minimal length and maximal
panoramic beauty, he can be in doubt only between the four routes A, C, D and G,
which satisfy the condition of “optimum” in that they are not preceded (in order of
beauty) by any other shorter one. Whether the saving of a single kilometre is worth
the loss <of panoramic beauty> from choosing the seventh route (G) instead of the
fourth (D), or whether the supposedly slight scenic superiority of the third route (C)
over the fourth (D) justifies twelve additional kilometres are questions that surpass the
boundaries of the problem as it has been posed; for in it only the desirability according
to two different criteria <applied> simultaneously enters, which precludes answering
the two questions just posed, but still permits, for example, to exclude the choice of
route F , given that it is preceded in beauty by D, which is shorter.

3. In some plane one wants to choose a point P, and one wishes it to be as close
as possible to each of the two given points A and B. Only all points of the line segment
AB are solutions of this “optimum” problem. For, if P is a point not belonging to the
line segment AB, by drawing the two circles passing through P with centres in A and
B one obtains a part of the plane (a lunula) inside both circles each point Q of which
is closer to both A and B than point P is; therefore the latter is not an “optimum”
point. Inversely, each point P of AB is an “optimum” point, because AP+PB = AB,
and hence it is not possible to diminish one of the two distances any further without
augmenting the other. From a geometrical-analytical point of view, one observes that
the circles considered, with centres in A and B, respectively, are the level curves of the
two functions ϕ(P) = AP and ψ (P) = BP that one wants to minimise; the “optimum”
points are the minimum points of ϕ on ψ = constant, or the minimum points of ψ on
ϕ = constant, and that means they are also, given the “regularity” of the level curves
(continuously varying tangent lines), the tangent points of ϕ = ϕ0 and ψ = ψ0 for some
ϕ0 and ψ0.

4. Let there be given, somewhere in a plane, two line segments, AB and CD. One
wants to choose a point P, wishing that from there one sees both line segments under
the maximally possible angle. The two functions to be maximised are ϕ(P) = ^APB
and ψ (P) = ^CPD; obviously the level curves of ϕ and ψ are the circles passing
through A and B and through C and D, respectively, which results from the well-known
theorem of elementary geometry according to which the angle at the centre of the circle
is twice the angle at the circumference (and therefore, given a circle passing through
A and B with O denoting its centre, the angle APB is constant when P moves along
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the circumference, because there must always hold ^APB = 1/2^AOB). The locus of
“optimum” points is therefore given by the points P where the circles determined by
A, B and P and by C, D and P, respectively, are tangent (and hence are tangent at P).
In order to limit ourselves to the case in which the determination of this locus is rather
elementary, let us suppose that the point R in which the lines through A and B and
through C and D intersect has the same potential with respect to the two circles having
AB and CD, respectively, as diameters (and hence RA.RB = RC.RD). The circle C

with centre R and radius r =
√

RA.RB =
√

RC.RD intersects both circles mentioned
orthogonally, and hence also all other circles of both bundles. From this it follows that
in each point of the circle C orthogonal to both bundles a circle of one bundle is tangent
to one of the other bundle: the locus wanted is therefore the part of the circle C that lies
within the concave angle formed by the half-lines RA and RD (the whole circle if A, B,
C and D are on a straight line).

A

B
C

D

R

Figure A.1:

5. Given a Cartesian system x,y and a point A (which we suppose to lie in the
first quadrant) one wants to choose a point P so as to minimise the distance AP and
to maximise the surface area of the rectangle formed by the axes and the parallel lines
through P. We must consider the two functions ϕ(P) = x y (to be maximised) and
ψ (P) = AP (to be minimised), and look for the points of tangency between a hyperbola
ϕ = x y = constant and a circle with centre A, ψ = AP = constant. Let a,b be the co-
ordinates of A; in the generic point P(x,y), the inclination of the tangent line to the
circle with centre A passing through P is −(x − a)/(y − b), that of the tangent line
to the hyperbola y = k/x is −y/x . In order for the two curves to be tangent, that
is for the two tangent lines to coincide, there must hold y/x = (x − a)/(y − b), or
y(y−b) = x(x−a). As one sees more easily with the substitution

ξ = x− a
2
, η = y− b

2
,

which gives (
η− b

2

)(
η +

b
2

)
=
(

ξ − a
2

)(
ξ +

a
2

)
or

ξ
2−η

2 =
1
4
(a2−b2),
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the locus wanted is the equilateral hyperbola passing through A with the point ( a
2 ,

b
2 )

(which is the midpoint of the line segment OA) as its centre and with the axes parallel
to the co-ordinate axes (the transverse axis is the one parallel to the x-axis if, as in
Figure A.2, a > b, and inversely in the opposite case). Next, one sees easily that
the part of the curve that forms the solution of the problem is the part of the branch
departing from A that lies in the first quadrant, which is drawn with a solid curve in the
figure.

x

y

A

P

Figure A.2:

6. One wants to set up a game of chance in which there are three possible out-
comes with probabilities u , v and w (hence u+v+w = 1). One wants to determine the
values to be given to u, v and w so as to render as high as possible, in three independent
trials, both the probability ϕ = 6uvw of three different outcomes and the probability
ψ = u3 + v3 +w3 of three equal outcomes. If one wants a geometrical representation,
one interprets u , v and w as the barycentric co-ordinates of the points inside a triangle,
which for simplicity’s sake may be taken to be equilateral.

We get
dϕ = 6d(uvw) = 6(vwdu +uwdv +uvdw),

dψ = d(u3 + v3 +w3) = 3(u2du + v2dv +w2dw);

the latter expression equalised to zero gives, together with du + dv + dw = 0 (which
holds identically because of u +v +w = 1), a system of linear homogeneous equations
in du , dv and dw, the solution of which shows that a move along a line ψ = constant
can be written in the following form:

du = (w2− v2)dt, dv = (u2−w2)dt, dw = (v2−u2)dt,

where one indicates with dt the common value of du/(w2− v2), etc. By the move just
indicated, the increment of ϕ is

dϕ = 6d(uvw) = 6
(
vw(w2− v2)+uw(u2−w2)+uv(v2−u2)

)
dt

= 6(v−w)(w−u)(u− v)dt

as results by keeping in mind that u + v +w = 1 and simplifying appropriately. Let
us now assume w > v > u; then du > 0, dv < 0, dw > 0, and dϕ > 0, and this means
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that, by moving along the line ψ = constant in the direction that lowers v and raises u
and w , ϕ increases. Therefore ϕ reaches the maximum of its values on ψ = constant
when u and v will have become equal, and the “optimum” points will be those where
w ≥ v = u . That each of those points is really acceptable as “optimum” appears readily
from the observation that if u = v , then ϕ = u2(1− 2u) and ψ = 2u3 +(1− 2u)3; on
the traject of interest (0 ≤ u ≤ 1/3, because if u > 1/3 one could rewrite w < 1/3 <
u contrary to the hypothesis), one sees immediately by taking derivatives that ϕ is
increasing while ψ is decreasing in u . By symmetry, abandoning the hypothesis that w
is the largest of the three values one arrives easily at the following conclusion: the locus
of “optimum” points consists of the three segments joining the centre of the triangle
(u = v = w = 1/3) to each of the three vertices (u = 1; v = 1; w = 1).

7. One may think of the same ternary diagram (that is, the triangle) as repre-
senting a series of “optimum” problems that actually occur in the technical sciences.
Note that one usually represents, in the ternary diagram, the various alloys of three
metals A, B and C, indicating the alloy that contains them in the fractions u, v and w
(u+v+w = 1) by the point with barycentric co-ordinates u, v and w (the three vertices
thus representing the three metals in pure form). If one wants to obtain an alloy that,
to the greatest possible extent, has two different properties (for example, lightness and
resistance, or flexibility and fusibility, etc. etc.), the solutions of the “optimum” prob-
lem are precisely the points defined in the familiar way: the level curves of the two
properties being ϕ = constant and ψ = constant, one must look for the point of contact
of a level curve of one property with the highest level curve of the other property among
those with which it has some point(s) in common. Because these level curves, for the
physical properties mentioned, are in general determined experimentally (except for
the specific gravity, for which one obviously has ϕ = au + bv + cw, with a, b and c
the specific gravities of A, B and C, so that the level curves are parallel straight lines),
we cannot solve the problem analytically, as in the preceding example. Rather, the
tangency of the two level curves may simply fail to hold, a property that up to now
was always true given that the curves had continuously varying tangent lines. It may
even be the case that no tangent line exists; take for example the level curves of the
fusion temperature, which will exhibit cusps corresponding to the “eutectics;” if such
a cusp touches a level curve of the other property, one may here have an “optimum”
point without tangency of the two curves.

A.3 Sketch of a systematic treatment

8. In all preceding examples (except the first one, which is very elementary for a
first orientation) we have considered problems involving the desire to maximise n = 2
quantities, and, as the locus satisfying the condition, we have found curves, or sets
of n− 1 = 1 dimensions. Moreover, in the preceding examples we have, case by
case, looked for a solution method suggested by the particular problem, and this would
probably almost never be equally successful in the case of problems posed in a space
involving more than two variables. Therefore we intend to sketch a systematic treat-
ment of the problem, supposing that we want to maximise n functions in a space of q
variables (n not larger than q); we shall assume the functions to be differentiable and
shall find that, “in general,” the result of the foregoing particular case always holds
good: the locus of “optimum” points is a variety of n−1 dimensions.
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9. Let one have q independent variables x1,x2, . . . ,xq (or a space Sq of q dimen-
sions), and n functions (n≤ q) of x1,x2, . . . ,xq , which we shall indicate by ϕ1,ϕ2, . . . ,ϕn.
One has to choose a point (x1,x2, . . . ,xq), and one wants that all the functions ϕh take a
value as large as possible there. We can limit ourselves to posing the problem this way,
saying “as large as possible,” because if instead in an application the case of “as small
as possible” would occur, or of “as large as possible” for some of the functions and “as
small as possible” for the other ones, one would only have to change the signs of the
ϕh or of a subset of them, respectively.

Like in the preceding examples, when choosing at random a point (x1,x2, . . . ,xq)
we shall in general find that points preferible to it exist, the ϕh all having a higher value;
however, there may be points from which it is not possible to move without diminishing
the value of at least one of the ϕh, and we intend precisely to determine the locus of
these points, which we shall call the “optimum”.

We shall suppose that the ϕh are differentiable, so that, by moving from the point P
with co-ordinates xk to the point P +dP with co-ordinates xk +dxk , the increase of ϕh
will be in first approximation

dϕh =
q

∑
k=1

∂ϕh

∂xk
dxk (h = 1,2, . . . ,n).

If, by a suitable choice of the dxk , all dϕh turn out positive, the point P cannot be
an “optimum”, because, for a sufficiently small ε, in the point P+ ε dP the ϕh certainly
take values all larger than in P: ϕh(P + ε dP) > ϕh(P) (h = 1,2, . . . ,n). A necessary
condition for a point to be an “optimum” is therefore that the n linear expressions

∑
k

∂ϕh

∂xk
yk (h = 1,2, . . . ,n),

the coefficients of which form the n×q matrix ΦΦΦ := [∂ϕh/∂xk], cannot all be rendered
positive simultaneously. First of all, therefore, the matrix must have deficient rank, else
one will always have, by putting the n linear expressions equal to arbitrary (in particu-
lar, all positive) values, a compatible system of n linear equations in n unknowns. The
condition that ΦΦΦ have deficient rank is equivalent to q−n+1 scalar equations (as many
as there are linearly independent minors (Jacobians) of order n, which the condition re-
quires to be zero), and hence, “in general,” it defines a variety of q−(q−n+1) = n−1
dimensions in the space Sq , which variety, by consequence, is or contains the locus of
“optimum” points. We shall shortly see that the ulterior conditions have the character
of inequalities, so that in general they will not determine a variety of fewer dimensions,
but will only delimit a portion of this variety as the locus of “optimum” points.

Given that the matrix has deficient row rank, the n linear expressions will be con-
nected by some linear relationship, and hence coefficients λ1,λ2, . . . ,λn will exist such
that

n

∑
h=1

λh
∂ϕh

∂xk
= 0 for k = 1,2, . . . ,q.

Let us first suppose that the matrix ΦΦΦ has rank n− 1, so that λ1,λ2, . . . ,λn are
determined uniquely (up to an arbitrary multiplicative constant). The λh thus appear
proportional to the n cofactors of the elements of any one column in any one of the
square submatrices of order n of the matrix. If the λh do not all have the same sign, it is
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obviously always possible to choose positive numbers ch such that λ1c1 +λ2c2 + · · ·+
λncn = 0, which condition is necessary and sufficient for the system of linear equations

q

∑
k=1

∂ϕh

∂xk
yk = ch (h = 1,2, . . . ,n)

to have a solution. If instead all λh have the same sign (while some of them may be
zero), one cannot find positive numbers ch for which the system admits a solution,
because λ1c1 +λ2c2 + · · ·+λncn = 0 cannot hold good.

If the rank of the matrix is less than n−1, the λ1,λ2, . . . ,λn are no longer determined
uniquely (to be precise, if the rank of the matrix is n− r , there exist, as is well-known,
r linearly independent n-tuples λ1,λ2, . . . ,λn). The preceding conclusion extends to
the general case in the sense that the necessary and sufficient condition for the exis-
tence of positive numbers ch that make the system solvable is the non-existence of a
positive (not necessarily strictly positive) n-tuple λ1,λ2, . . . ,λn; let this statement alone
suffice, because it seems superfluous to burden the discussion, deliberately kept brief,
by lingering over the exceptional case in which even all minors of order n−1 are zero.

Let us therefore recapitulate our conclusions in the following way:
The “optimum” points belong to the variety, generally of n−1 dimensions, on

which the matrix of <first-order> partial derivatives has deficient rank. Knowing the
values of the n cofactors λ1,λ2, . . . ,λn, we can exclude that the case of an “optimum”
applies if two of them have opposite signs; if, on the contrary, they are all of the same
sign, or maybe some of them zero, this means that, as far as can be deduced from the
mere knowledge of the first derivatives (that is, from the first-order approximation of
the ϕh), the case of an “optimum” may apply (if all λh are zero, the knowledge of the
λh does not suffice for the conclusion whether the case of an “optimum” may apply or
not by referring to the first-order approximation).

Naturally, as in all maximum and minimum problems, the conditions relating to
the first derivatives cannot be sufficient but only necessary. For a complete elaboration
of the general treatment it would be necessary to examine the conditions relating to
the second derivatives, and possibly to the successive derivatives, in the case that the
behaviour of the second derivatives still left ambiguity; generally however, in concrete
examples the examination of the conditions relating to the second and higher deriva-
tives is either practically superfluous by the very nature of the question, or may be
replaced by more intuitive considerations suggested case by case.

10. Let us write the result more explicitly for the most simple cases (n = 2 and 3).

For n = 2:
The condition that ΦΦΦ have deficient rank means now (with ϕ1 = ϕ and ϕ2 = ψ ):

∂ϕ

∂x1
∂ψ

∂x1

=

∂ϕ

∂x2
∂ψ

∂x2

= · · ·=

∂ϕ

∂xk
∂ψ

∂xk

= · · ·=

∂ϕ

∂xq
∂ψ

∂xq

,

and hence is equivalent to q− 1 equations. The condition on the cofactors reduces to
the very simple condition that the common value of the q fractions written above be
positive (if it proves to be zero or infinite, the case is ambiguous).
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For n = 3:
The condition that ΦΦΦ have deficient rank means now (with ϕ1 = ϕ, ϕ2 = ψ and

ϕ3 = χ): ∣∣∣∣∣∣∣∣∣∣∣

∂ϕ

∂x1

∂ϕ

∂x2

∂ϕ

∂xk
∂ψ

∂x1

∂ψ

∂x2

∂ψ

∂xk
∂ χ

∂x1

∂ χ

∂x2

∂ χ

∂xk

∣∣∣∣∣∣∣∣∣∣∣
= 0 for k = 3,4, . . . ,q,

or

∂ϕ

∂xk

(
∂ψ

∂x1

∂ χ

∂x2
− ∂ χ

∂x1

∂ψ

∂x2

)
+

∂ψ

∂xk

(
∂ χ

∂x1

∂ϕ

∂x2
− ∂ϕ

∂x1

∂ χ

∂x2

)
+

∂ χ

∂xk

(
∂ϕ

∂x1

∂ψ

∂x2
− ∂ψ

∂x1

∂ϕ

∂x2

)
= A

∂ϕ

∂xk
+B

∂ψ

∂xk
+C

∂ χ

∂xk
= 0

for k = 3,4, . . . ,q,

which is equivalent to q−2 equations. The condition on the cofactors can be expressed
by saying that A, B and C must prove to be of the same sign (while some of them may
be zero; if they are all zero, one is in an ambiguous case). Naturally, it is inessential to
which two of the co-ordinates one attributes the role we have given here to x1 and x2.

Superfluous to repeat that the conditions just reported in full for n = 2 and n = 3
are only those relating to the first derivatives, and that for convincing oneself that one
has really obtained an “optimum”, either a further analysis of second (and possibly
even higher) derivatives would be necessary, or else some supplementary consideration
suggested by the problem.

And let us end with the following observation, which is often useful in practice for
reaching the solution of concrete problems by working with less complex expressions:

In the matrix ΦΦΦ one may always suppress positive factors common to all elements
of one and the same row or of one and the same column (because it does not affect the
sign or the vanishing of the determinants of the various submatrices).

In the next example we shall see the usefulness of this possibility of simplification,
which exists of course not only for the special cases of this paragraph (n = 2 and 3),
but quite generally.

11. Let us immediately apply the treatment just developed to an example.
On a plane (x,y) one has three points A1, A2 and A3 (not lying on a straight line);

where above the plane must one place a spotlight P so that the illumination of the plane
is as strong as possible in the points A1, A2 and A3? With z denoting the height of P
above the plane and r its distance to an arbitrary point A of the plane, the illumination
in A will be proportional to z/r3; for it is known to be given by I cos γ /r2, where I
is the intensity of the light source, γ the angle of incidence of the <light> ray on the
plane, and r the distance, and evidently cos γ = z/r . Hence, with r1, r2 and r3 denoting
the distances of P to A1, A2 and A3, the three functions to be maximised are zr−3

1 , zr−3
2

and zr−3
3 ; given the fact that the resulting expressions are rational and have simpler

derivatives, we prefer to say that we want to minimise the reciprocals of the squares of
the three functions:

ϕ1 = ϕ = r6
1 z−2, ϕ2 = ψ = r6

2 z−2, ϕ3 = χ = r6
3 z−2.
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Let ϕi = r6
i z−2 be any one of ϕ, ψ and χ; the derivatives will be

∂ϕi

∂x
= 3z−2r4

i
∂r2

i
∂x

,
∂ϕi

∂y
= 3z−2r4

i
∂r2

i
∂y

,

∂ϕi

∂z
= 3z−2r4

i
∂r2

i
∂z
−2z−3r6

i ,

but, with xi,yi the co-ordinates of Ai (i = 1,2,3), and x,y,z those of P, there holds

r2
i = (x− xi)

2 +(y− yi)
2 + z2,

and hence
∂r2

i
∂x

= 2(x− xi)
2,

∂r2
i

∂y
= 2(y− yi)

2,
∂r2

i
∂z

= 2z,

so that

∂ϕi

∂x
= 6z−2r4

i (x− xi),
∂ϕi

∂y
= 6z−2r4

i (y− yi),

∂ϕi

∂z
= 6z−2r4

i z−2z−3r6
i .

By eliminating the positive factor 6z−2r4
i , the three derivatives appear proportional

to
x− xi, y− yi, z− r2

i /3z,

and in writing the matrix <of first derivatives> we can further simplify the last column
because we may multiply it by the positive common factor 3z , so that we get the fol-
lowing matrix: x− x1 y− y1 3z2− r2

1

x− x2 y− y2 3z2− r2
2

x− x3 y− y3 3z2− r2
3


or, by developing the r2

i (and writing the typical row, instead of repeating it three times
with i = 1,2,3): [

x− xi y− yi 2z2− (x− xi)
2− (y− yi)

2
]

or also[
x− xi y− yi 2z2 +(x2 + y2)− (x2

i + y2
i )−2x(x− xi)−2y(y− yi)

]
.

The matrix is square (for q = n = 3) and it suffices that its determinant equals zero;
to that effect, one may suppress the terms in (x− xi) and (y− yi) in the third column,
because they are proportional to the first and second column, and finally one may put
x2

i + y2
i = R2, because it is allowed to suppose, without loss of generality and with

the advantage of simplification we are about to see, that the origin of the co-ordinate
system x,y is situated in the centre of the circle passing through A1, A2 and A3; thence
x2

1 + y2
1 = x2

2 + y2
2 = x2

3 + y2
3 = R2, the geometrical meaning of R being just that of the

radius of this circle. But then all terms in the third column appear equal to one another,
and, to be precise, equal to 2z2 + x2 + y2−R2, and the equation reduces to

(2z2 + x2 + y2−R2)

∣∣∣∣∣∣
x− x1 y− y1 1
x− x2 y− y2 1
x− x3 y− y3 1

∣∣∣∣∣∣= 0
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or 2z2 + x2 + y2 = R2, given that the determinant simply represents twice the area of
the triangle <formed by> A1, A2 and A3, which points do not lie on a straight line by
assumption.

The variety on which the determinant vanishes is thus (because one may consider z
essentailly positive) the round semi-ellipsoid z = 1√

2

√
R2− (x2 + y2), which one may

simply think of as being obtained from the hemisphere resting on the circle determined
by the three given points by reducing the ordinate z in the ratio of

√
2 to 1, that is, by

somewhat flattening it. It remains to see the signs of the three cofactors, which are∣∣∣∣x− x1 y− y1
x− x2 y− y2

∣∣∣∣ , ∣∣∣∣x− x2 y− y2
x− x3 y− y3

∣∣∣∣ , ∣∣∣∣x− x3 y− y3
x− x1 y− y1

∣∣∣∣ ,
and hence represent (twice) the areas of the three triangles A1A2P0, A2A3P0 and A3A1P0,
where P0 is the image of P on the plane z = 0. The equality condition on the signs holds
if the three areas are equally oriented, that is if P0 lies inside the triangle A1A2A3. That
we really have an “optimum” seems intuitive from the very nature of the problem;
that the locus of “optimum” points is the whole surface indicated (and not, because
of ulterior conditions in the second derivatives, only part of it) will appear from the
considerations of the next two paragraphs.

R
R R

O

A1

A2

A3

Figure A.3:

Hence one may conclude: if one wants to maximise the illumination of a plane in
three of its points A1, A2 and A3, the locus of “optimum” points for the spot in which
to place the light source is represented by the part above the triangle A1A2A3 of the
semi-ellipsoid of revolution resting on the circle passing through A1, A2 and A3, and
with height reduced in the ratio of

√
2 to 1 compared to the hemisphere.

12. On this example one can make an almost banal, but interesting observation,
which may often turn out rather useful.

If one tries to solve the same “optimum” problem with respect to just two points A1
and A2, it is easy to see that the solution is given by the semi-ellipse that rests on the line
segment A1A2 and that one obtains from the circle by flattening it in the familiar ratio
of
√

2 to 1. So, it is the border of the locus of “optimum” points of the problem relating
to three points A1, A2 and A3, and precisely the intersection of the semi-ellipsoid with
the vertical plane through A1 and A2. This holds analogously for the two other sides,
from A1 to A3 and from A2 to A3. The points A1, A2 and A3, vertices common to two of
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the sides, are, if one likes to say so, the solution of the “optimum” problem relative to
the single point A1, or to the single point A2, or to the single point A3.

It is now easy to understand in general that each “optimum” point relative to m < n
of the n functions ϕ1,ϕ2, . . . ,ϕn is a fortiori an “optimum” point with regard to all of
them; that is what the very definition of “optimum” says, and moreover the examina-
tion of the condition on the matrix appears in accordance with this fact. Thereupon the
spontaneous idea arises that, under certain general conditions, it is possible to enunci-
ate the following result: The locus of “optimum” points with respect to n functions is,
topologically, a simplex of n−1 dimensions, the n faces of which are the loci of “opti-
mum” with respect to n−1 <of the> functions, the

(n
2

)
edges of which those for n−2

<of the> functions, and so on, up to the n vertices, “optimum” points with respect to
the n functions separately. We shall occupy ourselves shortly, if merely cursorily, with
this matter; for now we note only that the property just pointed out allows one often
to find “optimum” points, curves, etc. in a more direct and easy way before solving
the problem completely; in relation to the preceding example (n. 11) this <property>
allows one in particular to convince oneself that the whole portion of the ellipsoid up
to the determined limits is effectively to be considered as satisfying the problem.

13. The most spontaneous idea for trying to examine the validity of the topolog-
ical hypothesis just advanced consists in observing that if a linear combination with
positive coefficients (which in the sequel we shall briefly call “a positive linear combi-
nation”) of the ϕh, with ϕ = ∑h ρhϕh (ρh ≥ 0), has its absolute maximum in a point P,
such a point is necessarily an “optimum”. For if there would exist a point Q where all
ϕh would take a larger value than in P, also ϕ = ∑h ρhϕh would have a larger value in
Q than in P, against the hypothesis. Let us now suppose that all positive linear combi-
nations of such type admit a unique absolute maximum and have partial derivatives all
zero there and in no other point, which occurs in particular if the ϕh (and hence all their
positive linear combinations) are concave and differentiable functions, and let us show
that in that case also the inverse conclusion holds good: if P is an “optimum” point, it
is the absolute maximum of one of the positive linear combinations ϕ = ∑h ρhϕh. In
fact, let P be an “optimum”, and let the n usual cofactors λ1,λ2, . . . ,λn have the values
ρ1,ρ2, . . . ,ρn there: the relationship between the n rows of the matrix ΦΦΦ then means
that the following q relationships exist:

∑
h

ρh
∂ϕh

∂xk
= 0 (k = 1,2, . . . ,q)

or
∂

∂xk
∑
h

ρhϕh =
∂ϕ

∂xk
= 0 (k = 1,2, . . . ,q) when ϕ = ∑

h
ρhϕh.

By assumption, such a relationship cannot exist but in the point of absolute max-
imum of ϕ, which therefore must coincide with P, q.e.d.; moreover, it appears that
different “optimum” points correspond to distinct (and not simply proportional) linear
combinations. We can easily eliminate functions that are simply proportional by lim-
iting ourselves to linear combinations for which ∑ρh = 1: in this way, such func-
tions correspond to all points of a simplex of n− 1 dimensions (that is, a line seg-
ment for n− 1 = 1, a triangle for n− 1 = 2, a tetrahedron for n− 1 = 3, and their
evident generalisations in the spaces of 4, 5, etc. dimensions for n− 1 = 4,5, etc.),
where one can make a one-to-one correspondence between ϕ = ∑ρhϕh and the point
A = ρ1A1 + ρ2A2 + · · ·+ ρnAn with barycentric co-ordinates ρ1,ρ2, . . . ,ρn with respect
to the n vertices of the simplex A1,A2, . . . ,An.
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For demonstrating the validity, under the stated conditions, of our topological hypo-
thesis, it remains to demonstrate the continuity of the just established correspondence:
let us therefore show that, when one alters the ρ1,ρ2, . . . ,ρn a little, also the point of
absolute maximum of ϕ = ∑ρhϕh can move only a small distance, or, in more precise
terms, that, given an arbitrarily small distance θ , one can always determine ε so that,
from the coexistence of the inequalities |ρ̄h− ρh| < ε (h = 1,2, . . . ,n), it follows nec-
essarily that the maximum point P̄ of ϕ̄ = ∑ ρ̄hϕh is no farther than θ away from the
maximum point P of ϕ = ∑ρhϕh. Let us write ρ̄h = ρh + εh (|εh|< ε, ∑εh = 0), so that
ϕ̄ = ϕ +∑εhϕh; let M = ϕ(P) be the maximum of ϕ, and Mθ the maximum of ϕ for
the points not within distance θ from P, and let M′ be the largest among the (absolute)
maxima M1,M2, . . . ,Mn of ϕ1,ϕ2, . . . ,ϕn. In the point P we then get

ϕ̄(P) = ϕ(P)+∑εhϕh(P)> M−nεH

where H is the largest of the n values |ϕ1(P)|, |ϕ2(P)|, . . . , |ϕn(P)|, while for each point
Q not within distance θ from P we get

ϕ̄(Q) = ϕ(Q)+∑εhϕh(Q)< Mθ +nεM′.

Hence, if ε < 1
n

M−Mθ

M′+H , it follows that ϕ̄(P) > ϕ̄(Q) for all Q not within distance θ

from P, and this suffices to prove that it is impossible for the point P̄ in which ϕ̄

reaches its maximum not to have a distance from P less than θ , for else one would
have ϕ̄(P)> ϕ̄(P̄), against the definition of P̄. We can summarise and render intuitive
the meaning of the proof in the following way: with a slight variation of the coefficients
ρh, ϕ varies slightly, too, and hence it cannot decrease by so much in P and increase by
so much in a point Q external to a neighbourhood of P as to take in Q a value larger
than in P, let alone its maximum value.

Hence the topological property stated at the end of the previous subsection exists
certainly if the ϕh are concave,† differentiable functions, or, more generally, are such
that all their positive linear combinations have derivatives equal to zero in a unique
point (absolute maximum). As is easy to see, one may express this condition by
saying that among all points satisfying the necessary conditions established for the
“optimum” (matrix of deficient rank, equally signed cofactors‡) there do not exist
two in which the n cofactors take the same values or proportional values (that is,
given λ1,λ2, . . . ,λn and λ

′
1,λ
′
2, . . . ,λ

′
n, respectively, the values of the cofactors in the

two points of possible “optimum”, P and P′, it may not be true that λ1/λ
′
1 = λ2/λ

′
2 =

· · · = λn/λ
′
n). If the condition of concavity, or the other less restrictive one is not sat-

isfied, it may get satisfied by substituting for the n functions ϕ1,ϕ2, . . . ,ϕn other func-
tions f1(ϕ1), f2(ϕ2), . . . , fn(ϕn), where the fh are increasing functions, or by mapping
the space Sq with co-ordinates x1,x2, . . . ,xq onto the space S′q with new co-ordinates
y1,y2, . . . ,yq , or by applying both these possibilities simultaneously; given the intrin-
sical character of the notion of “optimum”, invariant with respect to each system of
reference, and the obvious possibility of replacing the functions ϕh by increasing but
otherwise arbitrary functions of them, the demonstrated property holds good also in
this new, extended case.

†In the Italian original: convesse.
‡In the Italian original: minori, and likewise for the next two occurrences of “cofactor” in the translation.
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14. Let us examine the condition just found in the case of the example of n. 11.
We have seen that the three cofactors represent the areas of the three triangles

A1A2P0, A2A3P0 and A3A1P0, where P0 is the projection of P on the plane of the three
points A1, A2 and A3. The proportionality (and even equality) occurs therefore only
for points P with the same projection P0, that is, for points on the same perpendicular
to the given plane, or also, in terms of the co-ordinates used before, with equal x and
equal y , and differing only in z . Because, when one considers z essentially positive, the
equation obtained from the condition that the Jacobian have deficient rank represents
a semi-ellipsoid and hence z appears a single-valued function of x and y, z = f (x,y),
the condition is satisfied. If one would not specify which side of the plane one wants
to illuminate, and if one would hence consider both signs admissible for z, the con-
dition would no longer be satisfied (in fact, one would have z = ± f (x,y)), and the
locus of “optimum” points would effectively split itself in two, each topologically of
the type considered (to be precise, the locus found for positive z and its mirror image
with respect to the plane).

15. To have a simple example of the application of the general procedure in the
case of n < q as well, let us generalise the problem of n. 5, by searching, in the space
of three or more dimensions, for the locus of points P from which it is not possible
to move so as to diminish the distance to a given point A and to augment the volume
(or hypervolume) of the prism between the co-ordinate planes and the parallel planes
through P. In the space of three dimensions (q = 3, n = 2), the two functions to be
maximised are

ϕ = xyz, ψ =−1
2
(
(x−a)2 +(y−b)2 +(z− c)2) ,

with a,b,c the co-ordinates of A (which we shall suppose positive). The matrix of
derivatives is [

yz xz xy
x−a y−b z− c

]
,

and the equations that result from the condition of deficient rank are

x−a
yz

=
y−b

xz
=

z− c
xy

or
x(x−a) = y(y−b) = z(z− c),

while the supplementary condition is that the three terms are not negative. Remember-
ing the result of n. 5, one sees that here (and also, as one can easily check, in the case of
more than three dimensions: q = any integer, n = 2), the solution is given by the curve
that has as its projection on each of the co-ordinate planes the curve that constitutes
the solution in two dimensions, which is a branch of an equilateral hyperbola, running
from the projection of A on the plane to infinity. The curve wanted departs therefore
from A and tends asymptotically to the straight line

x− a
2
= y− b

2
= z− c

2
.

16. In a subsequent paper we shall elucidate and study the problems of “con-
strained optimum,” in which the problem of economic “optimum” returns more prop-
erly; we shall see how this and its well-known solution in the form of the equations of
Jevons–Walras fit in the general framework, and we shall give a generalisation.





Appendix B

Constrained “optimum”
problems

by B. DE FINETTI∗

ABSTRACT. — With reference to and in continuation of the preceding paper on “Optimum” problems,
here constrained “optimum” problems will be illustrated and studied, and in particular the problem of optimal
allocation (which leads to the well-known equations of Jevons–Walras), and a generalisation of it.

1. In the preceding paper1 we have studied how one determines those points in a
space Sq of q dimensions from which one cannot move without lowering the value of
at least one of n given functions, which one wants to render as large as possible. Here
we shall occupy ourselves with a generalisation of this problem, supposing that one
must solve it while respecting one or more constraints.

In general, there will be given n functions ϕ1,ϕ2, . . . ,ϕn in the space Sq of q dimen-
sions, and the problem is to choose a point P of the (q−s)-dimensional variety V given
by the s equations

G1(x1,x2, . . . ,xq) = 0
G2(x1,x2, . . . ,xq) = 0
. . . . . . . . . . . . . . . . . . . . . .

Gs(x1,x2, . . . ,xq) = 0

so that the ϕh all have a value as large as possible. Obviously, one could reduce this
to the previous case by eliminating, if possible, s of the q variables xk using the <con-
straints> G j = 0, or by introducing somehow q− s co-ordinates y1,y2, . . . ,yq−s on the

∗Translation of B. de Finetti, Problemi di “optimum” vincolato, Giornale dell’Instituto Italiano degli
Attuari, Anno VIII, n. 2, agosto 1937-XVI. I have corrected some misprints.

1B. de Finetti, Problemi di “optimum”, Giornale dell’Instituto Italiano degli Attuari, Anno VIII, n. 1,
gennaio 1937-XV.

15
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variety V ; however, it is much more interesting, and for certain conclusions necessary,
to treat the problem directly in the new form. Naturally, instead of n ≤ q there must
now hold n ≤ q− s .

One would have such a problem—and we shall examine it once we are able to—
for example by modifying the problem considered earlier concerning the “optimal”
illumination of a plane in three of its points in the following way: instead of three
points there are only two, but the light source is constrained to a given surface (for
example, in a concrete case, to the ceiling).

Turning to the general problem, let us re-assume the framework of n. 8 of the pre-
ceding paper, supposing that also the functions G j are differentiable. We shall always
have

dϕh = ∑
k

∂ϕh

∂xk
dxk (h = 1,2, . . . ,n),

but the dxk will be bound by the s conditions

dGj = ∑
k

∂Gj

∂xk
dxk = 0 ( j = 1,2, . . . ,s).

As necessary condition for the “optimum” we find, like before, that the matrix
below must have deficient rank:

∂ϕ1

∂x1

∂ϕ1

∂x2
· · · ∂ϕ1

∂xq
. . . . . . . . . . . . . . . .
∂ϕn

∂x1

∂ϕn

∂x2
· · · ∂ϕn

∂xq

∂G1

∂x1

∂G1

∂x2
· · · ∂G1

∂xq
. . . . . . . . . . . . . . . .
∂Gs

∂x1

∂Gs

∂x2
· · · ∂Gs

∂xq


.

The matrix has n+ s rows and q (q ≥ n+ s) columns, so that the condition of de-
ficient rank is equivalent to q−n− s +1 equations; by adding the s equations G j = 0
one has again q−n+1 equations, and hence, in general, a variety of q− (q−n+1) =
n−1 dimensions, as must be (by the equivalence, as noted, of the constrained “opti-
mum” problem and the <unconstrained> “optimum” problem in a space of q− s dimen-
sions).

The condition on the cofactors remains essentially unchanged, too: we shall limit
ourselves also here to the case that the matrix has rank n + s − 1, and we shall even
suppose that the matrix formed solely by the derivatives of the G j (that is, by the last s
rows of the matrix above) has full rank. We must see if positive numbers c1,c2, . . . ,cn
exist for which the following system of n+ s equations has a solution:

∑
k

∂ϕh

∂xk
yk = ch (h = 1,2, . . . ,n)

∑
k

∂Gj

∂xk
yk = 0 ( j = 1,2, . . . ,s).
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We know, incidentally, that coefficients λ1,λ2, . . . ,λn, µ1,µ2, . . . ,µs (determined
uniquely up to an inessential multiplicative constant) exist such that for each k =
1,2, . . . ,q,

n

∑
h=1

λh
∂ϕh

∂xk
+

s

∑
j=1

µ j
∂Gj

∂xk
= 0.

The compatibility condition on the c1,c2, . . . ,cn is therefore also here that λ1c1 +
λ2c2 + · · ·+ λncn = 0 (the other terms would be µ10+ µ20+ · · ·+ µn0), and hence, in
order that the ch can all be positive, it is necessary and sufficient that among the λh
there are two of opposite sign.

2. Let us turn to the example indicated above: one wants to illuminate, as intensely
as possible, the plane z = 0 in the two points A1 (x1,y1) and A2 (x2,y2), but the light
source is constrained to a given surface G(x,y,z) = 0. We shall assume that also here
the origin has equal distances to A1 and A2: x2

1 + y2
1 = x2

2 + y2
2 = R2. We have to make

equal to zero the following determinant:∣∣∣∣∣∣∣
x− x1 y− y1 3z2− r2

1

x− x2 y− y2 3z2− r2
2

G′x G′y 3zG′z

∣∣∣∣∣∣∣=

=

∣∣∣∣∣∣∣
x− x1 y− y1 2z2 +(x2 + y2)−R2

x− x2 y− y2 2z2 +(x2 + y2)−R2

G′x G′y 3zG′z +2xG′x +2yG′y

∣∣∣∣∣∣∣=

=

∣∣∣∣∣∣∣
x− x1 y− y1 2z2 +(x2 + y2)−R2

x1− x2 y1− y2 0
G′x G′y 3zG′z +2xG′x +2yG′y

∣∣∣∣∣∣∣=
=
(
2z2 +(x2 + y2)−R2)((x1− x2)G′y − (y1− y2)G′x

)
+

+
(
3zG′z +2xG′x +2yG′y

)(
x(y1− y2)− y(x1− x2)+ x1y2− y1x2

)
= 0.

The single steps are not explained here, but will not be difficult to reconstruct by
confronting them with those of n. 11 of the preceding paper. The supplementary con-
ditions reduce to just one: the two determinants∣∣∣∣∣x− x1 y− y1

G′x G′y

∣∣∣∣∣ ,
∣∣∣∣∣x− x2 y− y2

G′x G′y

∣∣∣∣∣
or the two expressions

(x− x1)G′y − (y− y1)G′x , (x− x2)G′y − (y− y2)G′x

must have opposite signs.
Let us consider the particular case in which the constraint is formed by a planar

surface. If the plane were horizontal (z = constant), the solution would be obvious (the
projection of the line segment A1A2); let it, then, not be parallel to the xy-plane, and,
without loss of generality (except for the exclusion of the other trivial case in which
the straight line through A1 and A2 is orthogonal to the intersection of the two planes),
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let the x-axis be the intersection of the plane G = 0 with the plane z = 0. Hence the
constraint will be G = y−az = 0 (with a the cotangens of the angle formed by the
two planes G = 0 and z = 0; so a = 0 if, in particular, the two planes are orthogonal,
like in the practical case that the constraint is a vertical wall). Hence G′x = 0, G′y = 1,
G′z =−a, and the equation becomes(

2z2 +(x2 + y2)−R2)(x1− x2)+

+(2y−3az)
(
x(y1− y2)− y(x1− x2)+ x1y2− y1x2

)
= 0,

which, together with G = y−az, or equivalently az = y , gives

2z2 = R2− x2−2y2 + xy
y1− y2

x1− x2
+ y

x1y2− x2y1

x1− x2
.

This is the equation of an ellipsoid, symmetrical with respect to the plane z = 0,
which it intersects along the ellipse the equation of which one obtains by equalising
the second member to zero. As one easily verifies, this ellipse passes through A1 and
A2 and through the two points on the x-axis at distance ±R from the origin (which is,
as we will remember, the point on the axis at equal distance—to be precise, at distance
R—from A1 and A2), and has the straight line 2(x1− x2)x = (y1− y2)y as conjugated
diameter with respect to the one parallel to the x-axis (which enables one to determine,
by symmetry, two new points A′1 and A′2, and thus to characterise the ellipse completely,
maybe in an easier way). Once the ellipse is determined, so is the ellipsoid provided
one makes just one more observation, for example that z = R/

√
2 for x = y = 0.

For each value of a, the intersection of this ellipsoid with the plane G = y−az = 0
gives an ellipse, which is the locus wanted for which the matrix has deficient rank.
The acceptable part is the segment for which x− x1 and x− x2 have opposite signs,
or the segment between x1 and x2 (certainly, x1 6= x2, because x1 = x2 would mean the
excluded borderline case, incompatible with the choice of the origin at equal distances
from A1 and A2, in which the straight line G = z = 0 is orthogonal to the line connect-
ing A1 and A2).

3. A particularly noteworthy case of constrained “optimum” occurs in what one
might call the “allocation problem,” which constitutes the simplest “optimum” problem
of economics. One may solve it in a very direct way, but it will be useful to see how it
fits in the general treatment, also because only in this way will one be able to turn to
other, less easy cases.

One has fixed quantities x1,x2, . . . ,xm of m goods, and one wants to allocate them to
n individuals so as to maximise for each of them a function of the quantities received,
which will represent the utility, or rather ophelimity, that the bundle received of the
goods has for him. There are q = nm variables (the quantities of each good for each
single individual), and, to keep the meaning in mind, we shall not indicate them with
a unique progressive index (x1,x2, . . . ,xm,xm+1, . . . ,x2m,x2m+1, . . . ,xnm) but with two
indices (where the superscript is not to be confused with an exponent!), that is, with

x1
1 x2

1 · · · xn
1

x1
2 x2

2 · · · xn
2

. . . . . . . . . . . .
x1

m x2
m · · · xn

m.
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The constraints express that the total quantity of every good is given, and are

G1 = x1
1 + x2

1 + · · ·+ xn
1 −X1 = 0

G2 = x1
2 + x2

2 + · · ·+ xn
2 −X2 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gm = x1
m + x2

m + · · ·+ xn
m−Xm = 0,

and the ophelimities are given by the n functions

ϕ1 = ϕ1(x1
1 ,x

1
2 , . . . ,x

1
m)

ϕ2 = ϕ2(x2
1 ,x

2
2 , . . . ,x

2
m)

. . . . . . . . . . . . . . . . . . . . . . . .

ϕn = ϕn(xn
1 ,x

n
2 , . . . ,x

n
m);

one observes that the Gs contain each the variables of one row of the array of the
xh

j , the ϕs each those of one column. Let Im be the unit matrix of order m and Fh

(h = 1,2, . . . ,n) the n×m matrix consisting of zeros except for its h-th row, which
contains the derivatives of ϕh:

Fh =



0 0 · · · 0
. . . . . . . . . . . . . . .

0 0 · · · 0
∂ϕh

∂xh
1

∂ϕh

∂xh
2
· · · ∂ϕh

∂xh
m

0 0 · · · 0
. . . . . . . . . . . . . . .

0 0 · · · 0


.

Then the matrix <of first derivatives>, with n+m rows and nm columns, has the fol-
lowing structure: [

F1 F2 · · · Fn

Im Im · · · Im

]
.

For this matrix to have deficient rank, the familiar coefficients λ1,λ2, . . . ,λn,µ1,
µ2, . . . ,µm must exist such that the sum of the n+m rows, multiplied by them, be zero,
and moreover, for the case of an “optimum” to obtain, the λs must have the same sign.
But in each column we have just two non-zero elements, so that each column gives us
an equation of the type

λh
∂ϕh

∂xh
j
+ µ j = 0

or
∂ϕh

∂xh
j
=−

µ j

λh
.

One thus obtains, from the nm derivatives ∂ϕh/∂xh
j , q−m−n+1 = nm−m−n+1 =

(n−1)(m−1) equations expressing that in the array

∂ϕ1

∂x1
1

∂ϕ1

∂x1
2
· · · ∂ϕ1

∂x1
m

∂ϕ2

∂x2
1

∂ϕ2

∂x2
2
· · · ∂ϕ2

∂x2
m

. . . . . . . . . . . . . . .
∂ϕn

∂xn
1

∂ϕn

∂xn
2
· · · ∂ϕn

∂xn
m
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all the rows (and hence the columns) are proportional to one another (with positive
proportionality coefficients). This conclusion constitutes, in the case of the economic
allocation problem, the classical result of Jevons–Walras, basis of the masterly treat-
ment of Vilfredo Pareto.

4. The same allocation problem may show up, however, in very different cases,
in which the functions to be maximised may have a physical meaning, more concrete
and by many better accepted than that of ophelimity. Therefore I think it opportune to
give such an example, which clarifies the matter without any reference to the economic
problem.

Let us suppose to have at our disposal quantities X1,X2, . . . ,Xm of m metals and
that one must make n objects, for each of which one wants to render maximal a certain
physical property that is a function of the amounts of the various metals it contains.
How to allocate the m metals to the n objects?

Let us consider a realistic example of this kind. One has two metals, in the respec-
tive quantities of 1− γ and γ (it will be convenient to measure the quantities in volume
terms and to put the total volume equal to one, like we have done: 1− γ + γ = 1) with
the specific gravities of 1 and 1−a, respectively. One wants to construct three bodies,
of a shape that we shall specify shortly, so that an inertial moment is as large as possi-
ble, and one asks how one must, to that end, allocate the quantities of the two metals,
given that x1 + x2 + x3 = 1− γ and y1 + y2 + y3 = γ (please note that the indices, in
this example written as subscripts for the sake of ease, are those which according to the
notation of the foregoing subsection would have been superscripts). The shapes of the
three bodies must be the following: 1) Ball; inside, a ball of the lighter metal; outside, a
hollow ball of the heavier metal. 2) Cylinder of a given height; internal cylinder of the
lighter metal; hollow cylinder of the heavier metal. 3) Ball; an ellipsoid of revolution
about the longer axis—which shares its maximal diameter with the ball—of the lighter
metal; the residual surrounding volume of the heavier metal. The inertial moment to
be maximised is in each case that relative to the axis of rotation.

The inertial moment of a ball of a given metal is proportional to r5 (with r its
radius), and therefore to v5/3 (with v its volume); for the cylinder, however, to r4, and
therefore to v2; for the ellipsoid, finally, to rρ

4 (with r the longer radius (along the axis
of revolution), and ρ the shorter radius) and hence to u2v−1/3 (with u the volume of
the ellipsoid (proportional to rρ

2), and v the volume of the ball with radius r). Now,
in the three cases one has v = x j + y j ; furthermore, one obtains the inertial moment of
each body by supposing it to be made entirely of the heavier metal with specific weight
1 and subtracting the inertial moment of the lighter volume multiplied by a, which part
has the volume u = y j and the same shape <as the total body> in the cases 1 and 2, that
of an ellipsoid in case 3; therefore the three inertial moments are proportional to

ϕ1 = (x1 + y1)
5/3−ay5/3

1 ,

ϕ2 = (x2 + y2)
2−ay2

2 ,

ϕ3 = (x3 + y3)
5/3−ay2

3 (x3 + y3)
−1/3.

Taking the derivatives with respect to x and y one gets

∂ϕ1

∂x1
=

5
3
(x1 + y1)

2/3,

∂ϕ1

∂y1
=

5
3
(x1 + y1)

2/3− 5
3

ay2/3
1 ,
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∂ϕ2

∂x2
= 2(x2 + y2),

∂ϕ2

∂y2
= 2(x2 + y2)−2ay2,

∂ϕ3

∂x3
=

5
3
(x3 + y3)

2/3 +
1
3

ay2
3 (x3 + y3)

−4/3,

∂ϕ3

∂y3
=

5
3
(x3 + y3)

2/3 +
1
3

ay2
3 (x3 + y3)

−4/3−2ay3(x3 + y3)
−1/3,

and the condition of proportionality yields the two equations

ay2/3
1

(x1 + y1)2/3 =
ay2

x2 + y2
=

6ay3(x3 + y3)

5(x3 + y3)2 +ay2
3(

=
6ay3(x3 + y3)

−1/3

5(x3 + y3)2/3 +ay2
3 (x3 + y3)−4/3

)
which, together with x1 + x2 + x3 = 1− γ and y1 + y2 + y3 = γ , yield four equations
in the six variables x j and y j , thus defining the (two-dimensional) “optimum” surface.
Please note that, when one indicates with

γ1 =
y1

x1 + y1
, γ2 =

y2

x2 + y2
, γ3 =

y3

x3 + y3

the volume percentages of the lighter metal in the three bodies, one can write the equa-
tions as functions of the γ j as follows:

γ
2/3
1 = γ2 =

6
5
γ3

+aγ3

.

Let us write

f1(z) = z2/3, f2(z) = z, f3(z) =
6

5
z
+az

,

and let us draw, in one figure, the graphs of the three functions in the relevant interval
(0 < z < 1): the conclusion found says that γ1, γ2 and γ3 must be the abscissa of the
points of intersection of the three curves with one and the same horizontal. We observe
that f1 and f3 are always larger than f2; that f3, initially smaller than f1, intersects this
function in the point z = ξ

3, where ξ is the unique real root between 0 and 1 of the
equation 6ξ −aξ

6 = 5, and that it reaches the value 1 in the point z = η , where

η =
1
a

(
3−
√

9−5a
)
.

For the ultimate solution of the problem it remains only to determine the volumes
V1, V2 and V3 compatible with each admissible term γ1, γ2 and γ3, and to that end
it suffices to observe that V1 +V2 +V3 = (x1 + y1)+ (x2 + y2)+ (x3 + y3) = 1, while
V1γ1 +V2γ2 +V3γ3 = y1 + y2 + y3 = γ ; geometrically the condition means that the
weighted average of the three points of intersection, taken with the weights V1, V2 and
V3, is on the vertical z = γ . More directly, considering V1, V2 and V3 as barycentric



22 APPENDIX B. CONSTRAINED “OPTIMUM” PROBLEMS, BY B. DE FINETTI

Figure B.1: Cross-sections of the three bodies 1), 2) and 3)

O 1
z

ηξ2ξ3γ1 γ2γ3

γ

f1(z)
f2(z)f3(z)

Figure B.2: The graphs of f1(z), f2(z)
and f3(z)

V1 V2

V3

V1 V2

V3

V1 V2

V3

γ < ξ3

ξ3 < γ < η η < γ

Figure B.3: The courses of the level lines
t = constant

in the ternary diagram of V1, V2 and V3

co-ordinates in the familiar ternary diagram, the equation V1γ1 +V2γ2 +V3γ3 = y1 +
y2 + y3 = γ represents a straight line, and, by varying the trio γ1, γ2 and γ3, a family of
straight lines. With t = γ2 taken as parameter, one may write this equation explicitly in
the following way:

V1t3/2 +V2t +V3
1
at

(
3−
√

9−5at2
)
= γ ,

given that one then obtains

γ1 = t3/2, γ2 = t, γ3 =
1
at

(
3−
√

9−5at2
)
.

For the behaviour of the family of straight lines in the triangle, and hence for
the solution of our problem, it is necessary to distinguish three cases, according to
0 < γ < ξ

3, ξ
3 < γ < η , or η < γ < 1 (plus the two borderline cases γ = ξ

3 and γ = η).
The qualitative behaviour in the three cases is indicated in the figure, and we do not
want to linger over it any longer; we only note that for γ > η the points near Ver-
tex 3 are excluded, due to the fact that the third body, in the allocations satisfying the
“optimum” condition, can at most take the volume V3 = (1− γ )/(1−η).
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5. The most direct and interesting generalisation of the allocation problem con-
sists of maintaining the assumption that each of the ϕh is a function of only m of the nm
variables, while on the contrary allowing that the m constraints G j = 0 are arbitrary.
Let Gh (h = 1,2, . . . ,n) be the m×m matrix given by

Gh =



∂G1

∂xh
1

∂G1

∂xh
2
· · · ∂G1

∂xh
m

∂G2

∂xh
1

∂G2

∂xh
2
· · · ∂G2

∂xh
m

. . . . . . . . . . . . . . . . .
∂Gm

∂xh
1

∂Gm

∂xh
2
· · · ∂Gm

∂xh
m


.

Then the matrix <of first derivatives> will be[
F1 F2 · · · Fn

G1 G2 · · · Gn

]
.

It is interesting to see that one may reduce this case to the preceding, particular
case. For let

C =


c11 c12 · · · c1m
c21 c22 · · · c2m
. . . . . . . . . . . . . .
cm1 cm2 · · · cmm


be a nonsingular but otherwise arbitrary square matrix of order m, and let us replace the
first m columns of our matrix, which we shall indicate with the symbols K1,K2, . . . ,Km,
by their linear combinations K′1,K

′
2, . . . ,K

′
m defined by

K′1 = c11K1 + c12K2 + · · ·+ c1mKm,

K′2 = c21K1 + c22K2 + · · ·+ c2mKm,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K′m = cm1K1 + cm2K2 + · · ·+ cmmKm.

In particular, on the place of the ∂ϕ1/∂x1
k one will now find in the matrix, as a result

of the transformation, their linear combinations

A1k = ck1
∂ϕ1

∂x1
1
+ ck2

∂ϕ1

∂x1
2
+ · · ·+ ckm

∂ϕ1

∂x1
m
.

It is clear that in this way the linear relationships between the rows remain re-
spected, and also that, the matrix C being nonsingular, one cannot introduce new ones;
the same holds good if, given n matrices Ch := [ch

jk ] (h = 1,2, . . . ,n), one transforms
each of the n groups of m columns in this way. If, in particular, we now choose the Ch

so that the Jacobians Gh, which appear as submatrices constituting the last m rows of
the matrix, come to take, with this transformation, the form of the unit matrix of order
m, we reduce this case to the one of n. 3. But to obtain this it is sufficient (and neces-
sary) that the matrix Ch is the inverse of Gh; as is known, this matrix is then formed
by the cofactors of the latter matrix divided by the value ∆h of the determinant, so that
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one can write the linear combination Ahk as

Ahk =
1

∆h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂G1

∂xh
1

∂G1

∂xh
2

· · · ∂G1

∂xh
m

. . . . . . . . . . . . . . . . . . . . .
∂Gk−1

∂xh
1

∂Gk−1

∂xh
2

· · · ∂Gk−1

∂xh
m

∂ϕh

∂xh
1

∂ϕh

∂xh
2

· · · ∂ϕh

∂xh
m

∂Gk+1

∂xh
1

∂Gk+1

∂xh
2

· · · ∂Gk+1

∂xh
m

. . . . . . . . . . . . . . . . . . . . .
∂Gm

∂xh
1

∂Gm

∂xh
2

· · · ∂Gm

∂xh
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

To the elements thus transformed becomes applicable the conclusion of n. 3, which
one can formulate in the following way: From each of the n matrices Gh, the m deter-
minants obtained by substituting the derivatives ∂ϕh/∂xh

k for the first, second, . . . , m-th
row follow; the n m-tuples appear proportional to one another, and the coefficient of
proportionality between the two m-tuples with h = h′ and h = h′′ is positive or negative
according to the determinants ∆h′ and ∆h′′ having the same or opposite signs. Thus,
all rows of the array 

A11 A12 · · · A1m
A21 A22 · · · A2m
. . . . . . . . . . . . . .
An1 An2 · · · Anm


appear proportional to each other (and with proportionality coefficients of the sign re-
quired by the preceding rule); hence the proportionality obtains, naturally, also between
any two columns.

6. I hope that the notion of “optimum” as conceived and applied in mathematical
economics will have become clarified with the treatment developed in this paper and
the preceding one, and with the examples that illustrate it, chosen in various fields
outside of economics. This seems to me particularly important because, like I have
expounded in other works, this notion alone, together with the notion of “ophelimity”
that is applied, should constitute the basis of economic theory. On this subject I plan
to speak amply in other work; for now, it was important for me to clear the ground
beforehand of any possible misunderstanding, doubt and distrust that the notion of
“optimum” would maybe have allowed to persist if it would always have presented
itself only in connection with economic problems, and would have been applied only
to the notion of “ophelimity,” the meaning and importance of which, it seems, are not
understood and appreciated by many at their proper value.




