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Sumary. — (diven a convex function, the sets where it assumes values gre&ter than

a generic constﬂnt ¢ are obviously cem'gx sets, each of them inside anotherj but
v .‘{...‘,‘ %

-

is not t.rue, i. e, that M such a class of sets we can always assoclate

a convex fmctimg. M are studying the circumstances upon whichg, the exceptions

\

depend and the conditions which can exclude them, S el
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1 GEEERAL REMARKS A
let f£(P) be a convex function of the points P (of the plane, or, in general, of an affine

space of any finite number of dimensiong, uh?h&n the regions defined by the inequalities
S |
»
£(p) = chiousl (as the cons‘sant <! changas) a family of convex mgiona/, one
imside i I‘W‘?“‘L‘ 5 BINE, o Tl J‘u corasly ‘énr ,ONE g ARG
internal to theuothar,Acr, as ‘we can gam@g;y glwen a camrax stratification is it
FRypedts N\
15 ) 'ﬁt%ﬂv L
possible to associate with it, in the mw*bﬁrm?’ a comi}&x function f(P)? Jhat™
i Fa
I—.e 4w, in brief, is such a stratification 2 stratiflca.tmn efﬁconvax function?

‘ﬂ@enerally we seem to think so: for instance in St mathamat.wal ecc:mmics we—tirkrle-d,

we, from the fact that t.he msfims \P(‘P) 2 ¢ (Precisaly: the regions

Cvacietd q'indifforeun i L Hvsrid lw*r e T I.E:;({:cﬁ
‘bounded by the “indifferencer’varmtias*‘) are cm'fex,}\’rhat £(7) (the index oﬁm&e&i—e«*
also ;
Lut:.lit.y!} canj\be a ssumed convex m(ﬁhﬂ:isnaithar ‘-P(I-") is convex or we may replace

1 W &

)it by f(P) = F ( SD (P)), F being increasing, &0 thatwv?P) a:.i;gh.t—‘ba convex).

C/.%’{livac:ane1;.1‘51.4::311,'.L:;*, in the more intuitive case of t.he plane, such a statement would mean 4
[="Linee. da Lvelle*] :
that, given as contours) for a surface z = £(P) = f(x,y) & family of convex curves (P (P)=

\0 (x,y) = const., it is alw§ys possible Eny making use of the resulting arbitrarmeas

1o wivlaiea
of f, which is dafinedfw—ﬁer an increasing transformation, f Q F( lP 9] to find &

convex surface z = £(P) having the given contuurs\ﬂ Such a property holds true when,

SES U e
for instance the function \P (x,7) is 40 have bounded first and second de-

riviativess that is clear if we considarwil—ﬂ-(——ﬁu%—‘ AM which, in such a case,

1) %
or also infinite: in such & case - We l‘}ave to give up the conclusions resulting
from beinz able to talk about "maxima" [rather than "superior extreme" in several

questions (see for instance note (7)).
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is certainly convex provided t’mtx is large enough. @) ‘Such & conclusion would not
) g - f‘«,«‘{,
be valid if & restriction of this kind werehdt imposed, Tn é@“m@w%z we' shall con-
Coruttey X b AL
sider somelnesative instanees f{rom wilch to start in order to face the problem in its

general terms and to study the meaning of the circumstances which prevent the existence
of the discussed convex funcilon (or more precisely which cause it to dégen?eéata into
& constant,)

In any case, if the problem admits a solution, there is one amonz the solutions
{mimly determined except for an(miﬁit.ive and a wultiplicative constant: zwh*kfﬂ?))
which is me we h&athm\;i}.» (in the intuitive sense which will be made wecisa

in éwtis:m 3); every other solution is given by F(f). ¥ being increasingg am convex.
Some questions - relating to maaa mnima}; %;envex i‘mct.ima« which may be interesting

independently of the problem previously considered, will be studied in sections § and 7.

2. Examples
Let us consider some examples of convex stratifications which are not stratifications
of convex functions, For the sake of simplicity we will fi%l only with circulariplane

LA MA "ﬂéig gl G
%r&mf"immam {families of circles each W&%&%@a%%&m’.}.

& igmﬂas 1 and 3 represent solids which have been obtained from cones by changing their

profiles as it appears in the section: the plane of the section is a plane of symzetrys

therefore the contours are the circles whose diaema%rs are m«m&w& in section,

y i z’f; >
j ﬁaﬁwx ):,_,5 i [ThAe

g’ﬁw alterationlof the cone which is ahm}y—tm figure 1 Puwa-b
e, AT o [rRevTo ~suice®y sl Seicgt(TRATIo )
abﬁ.mﬁiﬁg = jof & c,i.ral%yr a part of the profile; 3 In the figum 3 a part of the

o w('”\-)iz-é‘“‘;”" :

”ii‘ ‘-?(x) is a function gi‘ one variable, the second derivative -ofif . eﬁﬁf&a%
=K ﬁ*f\‘%ﬂg*}l 5y wnieh is always negative provided: \P (x) is twice

| differentiable, the ratio "/ Y0 '2 is boundedjabove in the rield wikeh S considered,

and A is smriar to the -upper-ewtreme 0. Such a ratio. We canargue in an analogous

way for P (x,y) as a fzmatiwn of two variables (or of three or amra) the condition

b N Y g
@ﬁm&i LV /< sup )2 }\ » S A U? ; '
{ P’ {; 1 c‘y D/ 9
and

for every ;agiatﬁoi‘ the fie every direction p (or, alm,i_fir the/ aﬁ\ﬁirac’bim w
having the maximum glope, Li the thawam “67\ No.L is taken info &ccount.)

We shall see 1n the mﬂw (9) that the \éﬁly existence of second derivatives without
the additional resiriction that they be bounded, is no l%az* a sufficient condition
for the established conclusion. % il w Al I

f=-¢ Haga f{x) +H’
{ W= a{ytr) - Aixtw{x};ifg
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profile bas been divided in an infinite number of p&m (.far instance each being one

]
?»3"» 2wl i‘{u ‘ti\‘g%& 3« Aq §€‘ ’g { ey

£ 'W@Ma-%gg\figure 3a, have

! half of the ;m'amding) on which notches,
been made. ‘ £
L 5 f% AL ot

The solid represented by figure 2 can be also consideredidesiseet f‘rm a4 gone, For that

§

purpose the cone has been %\“a&mﬁ «~ not in such & symmetiric way - but by shifting

the successive sections, so that the centers (in projection) move alongz a logrrithmic

£
.....

spiral (radius of the aimlaga lang& of the spiral from theasymptotic point.)

The stra &l‘gm&ﬁms s which are obtained from the emp}.eg represgnted by the figures 1
[sTROZzZATYRED

and 2, have sone *&eaks in the two points A and B ai tas *”igum 1(3) the strata
pEsorrinin e pvers Ht s
becamx i*xfinitsly subtle f{m wﬁﬂwytkmm Wg‘m & preclse way in & sections

| af
Mot Th@ same i‘act can be seen in figure 2 mg all the points of & curve (logarithmic spiral
whose osculating circles are. rspmsgnted by the given circles of which the spiral

is the envelope cmege,}i ~—

U c.;
.é« ﬁx;{cﬁr’mgwrra@swﬁ{ &@Mﬁﬁthé ﬁﬁ)id,%i@h—hmi\infmim or gero slope ang

ISRovaaropey =~ de x’}ﬂ%%&’féam
which c&zmct be eliminated by my/{ ehanze- o -shane f*};?“(LP ) (as it is obvious and we shall

wha eag
see anyway, in section 6) am#Mtgmnvemty. In the case %m»by figure 3 in

order to restore csmv&xity by correcting the effect of one of the notehes s we should
gx@i%wu ‘Fsk& UEERMA LESTAND 0]
gquadruple (while keepidr—-ati 3;1 the upper part of the graph)the height of all the

part below the throat of the noteh (as we can see in figure 3b). But if we repeat such
a process for an infinite number of times, the frustrum of the cone with the notches

Lis ke it «ALTE 22477
is transformed into a solid whoseflensth extendf to infinity; and which therefore can=

/
not be jolned with the lower part, ‘\3
3. DEFINITION; THE MINIMAL CONVEX FUNCTION [ Fui/2/0ME MINI MAMENTE Cop/ WS&:@J
To deal with tha pmblam we shall place ourselves in the more general affine space S:

Copadly @V% %%ﬁiﬁi
g»i?eném 5 pm.nts ?}.’ wx P and numbers /<l’ e 3 h( 2 A g 1) we can define their

(3} ‘i’“‘(i‘{iﬁ« em{ %’ﬁ} y :
4 and B are the extremes of the part substitued byan arc of circle (in the figure
the letters are not indicated).
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linear combination {bar;fiesfzwﬂ P = é /\ ,; a3 we do not assuse metrics : ors,

/.

we may think it possible to compare the 1&:‘; ma of two segments only

W ,, . Codait 7
& set C is é%i‘iﬂ%ﬁ a8 gonvex if it éaae%n&s% i1l the %gmnm ?ﬁiﬁ&@ ox %,r@ws are

Ly w téaw are parallel,

o

‘ ;} contsined Ef‘ff 2 ged (l.e.1 together with Py and Poy every P w/\ y"’?z with /( /]:&3,
el A /L’ = 1j then also: together with Pye..F , every P =2 4 Byowitn A, >0,
~< 2 A = 3,). I ma}. mm:tmn £(r), defined on & convex set , i:a sald to be convex
| %;% tﬁzam if.” f‘{%)‘“ %/\ ff ) *%@wwgmmﬁmmw Pl’ .HF of C ;{; and
E A A, et (54 - 05 e B Po S0 F

“?‘f It is zzsafu}. ?w note the g}amm given in Gs any func ﬁlﬂﬁs; (r) {m§ convex) and
sap;ws:img@ ¢ W

5, "e(®) = 8%2- A E‘HJ (g)as we vary all the pmaible ways of expressing Ps S ,(

> asa Eine&r combination with coefficients /< > i) of a,ny finiﬁﬁ number of points ?1 g:f f:i

< [CRIsULT? ¢

(o it fﬁllsw that £(P) is convex, and that, m:;&ﬁa, we ;‘%;ﬁ‘i; f{?} YJ{E*} while f{?)&}b’ m
o9 ,@ whan \P (P} is any other convex function € ‘,L' 3 M ey }é*’“\
‘t’( (’333& ém&mémﬁzm R L I L SR N

e e S o 2 £ {

“’é‘ Besides tne e gs:via‘éﬁa i‘(z’) = const. let us consider the strata o & £(P)S b of a

Mf
& &%mtiﬁ’i@atiﬁngm»m called convex il every stratum ls the difference of two convex

sets ( in the examples of the section 2: the zmﬁ&f‘?ﬁwmn two non secant circles).
! EMavil é«é«‘ﬁj

4 (convex) function si' (P) is defined to be mimlmwx in sne-of its ﬁm’a@ a®
s ";"

(P) b @ (and therefore; obviously, in every mrmsm wikelr-¢8 contained in *;%w one
g&/’
mn&i@smd}w il every convex function f(P)- having the same stratification ( the

;i.a.;f(P) = F( “P (@)) F being mmaairsgg and the same values on
, {:(?} = afor f(P) =a, £(P) = b tor P (p) = b L.es F(s) = 8,
F(b) = % S hs, 1 v s tretan, 2 ).

)

Coue X,

For general s 8es, for instance, T, Honuesen u. W, Fenchel, Tneorie der k\géwxwi
Korper, Berlin, @prmggw, 1934, :
(5)1e we want to give an abstract definition o£=¥smt: €he class [ of the /. /., e

ALLE §
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AT ﬁiw%m f{& fgf;g L éﬁ-—vs if Lo &mx ‘;‘}; M’{&*ﬂ%& i
%’a now gim tgu ﬁigfareatm So-dpaw- the mﬁm convex function when agyﬁaﬁ of
CowtovR SURFACT ¢

. MWW% is given g’ﬁw two bounding the stratum, with those in the inside or |

£

4l
not, or a i’i;xiw number or a; mmerable infinity,e.. /@? all); and ziven the extreme
5‘ wg

values &, b aif, t&m contour (a«b} /
@gg &

The firstwey is an iterative process., Let us start from the function
“a in the entire stratum, except

g (Zﬁ ‘v(?)'ﬁ the inside contour where it is egual te b.
Let (?} be the g;;iz‘:al ieam*&x funciion }(]D (P} (see the preceeding lsm), and
then lﬁ%?@ ("5‘} be@ the minimal imﬁm 3@ {(P) which is ¢ nstant on the pre-
scribed es @si it is enough to take ‘76 2 (P} = au;a@t[c' 1 {(Q), Q being on
the Mﬁw@%&w ‘p&aaiﬁg mwmga P or external t@ {;
Anslogously let us pass from [ , to \FB and from kf)za p in Wml from S// o

‘{) + i snd from ol to L{" #2; the sucession is never éwrmizzg and therefore
2n+ 1 n+ 1

20y
it appwac;heﬁ & limit function \P {F}, which is convex beinz the limit of the comvex
whicdh ﬁ‘ ot ”’KQ,;? £ ’ﬁ:.,; ar” by gv)a»,
functions (f) {h being edd), and ﬁcaﬁsm% on the -established -level s being
the limit of the SD (h being evem) possessing such & property. i

4‘“;;‘ H
% (veauce to J

{4 In order that the &s&lﬁtim should not be illuscry, must not degenerate into a

aﬁmtam; the only way wm can heppen is that 'P(’ﬁ) = b all along & stratum rather
{ @i SwRFACE

then only on the imid« (0) is equal to ¢ for & point

Q iﬁsidﬂ the set P (P) 2 ¢, we cannot ﬁwfa.m any point 7‘) (P) » ¢ (bo-proveity
w;, which has been

{ { s m ’§ let us-assume {P‘} » e} by lmgmmg the segment PQ beyond

£ Wil £
sssumed inside the set where 3 ¢y, we stall find mors pm‘mts ﬁ@;“ﬂ (R) _' ;
& end for ¢ } ranglng between i and P we should have @ {@} > amﬁmy to our %haaig }
w?‘ loreover it is selé gvident that if we change the extreme values a and b to &' and b'

(vi>a'always) all the ‘}D and the change lﬁ.nﬁﬁy (because all the procedures are

'@ continuned) :
¢ difference sets of & class of sets K, each inside the other; 1. ¢. X &s@s‘m
that for, two of its sets b and B, whatever they may be, &?ﬁ always or B4 (or
alsot: K m&i‘b—s ordered with regard to> ) :&w

;e ) M
| g; &




-b -
. ‘gf"

effghﬁewam&m);q/ becomes S&' =h+k -&&?@Gﬁiﬂ@ h = (ba' ~ ab'%f{b - a) and k =

(b? - &')/(b ~ a) (so that h+ka = a', h+kb = b'}, the mmml[{canvam function r@}.ative

to a stratification is therefore, as/ W%fm , determined -except.for.an : Ba U ld, L 4.

additive and multiplicative constant; ( > 0).

t T"A»’
s;f

L, CONVEXITY OF e FR{’}HII;?S
The other rrocedure - that is more analyticeconstructive- to determine %ﬁffﬂ reqnires
that we taks into congideration the thickness of the strata and the Erefila of tha

function according to its different g citura.€ )

’ },mg (P) be a linear function of P 1.0, leﬂg (Z /( pPy) be equal to ;,.Tj(h
f ;57 { E;h( The parallel nyperplanas_f§=taanst. define a giracitura; we shall consider

B

as included in the notion also that of the orientation given by the direction along
whiahig increasas (therefsr@’ég’ =h + E will define the same giacitura ai;f%
for k > 0, and for k < O the opposite giacitura: the same %y?erplanea, the cretation
inverted). !@ shall call “_Ei - thickness of "a stratum" %he ﬁifierﬁaaﬁ‘jiﬁ ~—§5 !
ﬁh@ref% " and é; are the upper bounds @{j§(§0 on the ﬂWﬂwrsuyfaces bounding the
stratum on the outside and inside respectively. The ratio of uhea 5 thicknesses of
several strata no longer depends on the asctual coefficient k » O but only on the
(orientated) glacitura. In this sense we could spesk of the ratio beiween the thicknesses
of several strata according to a given giacitura (and, sometlmes, for the sake of simpli-
city, we shall speak of nthicknesses" implying that, they being det#rminaﬁ except for
a constant, we should limit ourself to consider ratios between thicknesses taken

according to the same gimcitura).

A
(%)
"Giacitura” {pl giaciture) means literally ngituation®. Since the English equiva-

lent does not seem appropriate here, and since moreover the mathematical definition
is given in the following line of the text (v. supra) the original Itallesn has been
kept throughout. (translator's note.)
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How let £(P) be a function of P, then we shall indicate with f; (x) the upper
extreme of £(P) on the pyperplane £ (P) = x; the function i‘j (x) is the profile of
the function f aecmﬁiﬁgz %o the glacitura _% {this denomination is of & intuitive
meaning in the casse of & surface z=f(P), P being points on the plane x,y).
Let us prove now, as & lemma, that if (for a function f(P), its level varieties (f(P)
= ¢) bound convex regions (£(7)& ¢), the necessary and sufiicient condition that f£(P)
be a convex fum%i@ y is that allits proflles be convex, In fact, if {(P) is assumed
to be convex, it follows that also f’j‘ {x) is convex, that is

f;fxg) 2/{:‘;‘_;(%1} + A if(!a} (fm‘xl-:tx? < X35 %, n,{xl/“ 13,//1*1),
because, having indicated by P, (for h ranging from 1 to 3) the point of 5 = x, where
£{P) sssumes the maximum value i-‘g (Kiz)w and having supposed 0§ = /{ ?1*/‘1 I*"B, it follows,
from (the linearity of £ ) *:;amg (Q) = %y so that 575 (Xg) 2 £(q) while, from the

convexity of £, £(2) = /{ £ (Pl) d;/b’ i‘(%) sdhat proves our assertion,

Conversely if we assume that {(P) is not convex and that every region bounded by level

variety is convex, it follows that at least one profile is not convex. In fact, let

us, for instance, suppose that there are three points, Py, P3 and P, = /‘ Pyt /14?3{ ,fi";;
,/{} G;/f 4/’%’* 1) such that £(Py) « £(B)+ f(PB) and lgtg = X, be & supporting hyper-

plane of the level variety at Fzzié} %h&ng (g) S Xy for every Q where £(Q)2 £(Py),

and therefore fg (xy) = f(f“ﬁ). Since for x, = = (Py) we have {g{xl} = £(P;) and

the same for e T j (Pi} the profile according to the glacitura ? is not convex becau ges

igixa) ﬁA/fj(xi}/fg(xz), X, ..//xl .,./433. .

We must remark that & convex funetion I(P) remains univocally determined if we know all

its profiles £ (x): ¢ in faet £(P) is equal to min, £ ; {52(5«’}) as 5 changes, or also

£f(p) = i‘j {x) ﬁj = x is supporting hyperplane at P (for in such a case we have the

minimum) .

5. CONDITIONS FOR THE PROFILES

the condition of convexity of the profiles my be writtens:

T6TThat is the tangent hyperfilane if t s & e e
one of the plaxmaﬁ%hiah %’i’g the vgriﬁﬁﬂn%h% %%%n?‘%‘i%ﬁ%&tiﬁﬂ%%%ﬁ%gﬁﬁ b i
a supporting hyperplane.




£ () -1 (%) £ (x) -1 (x)
® i(xl < % <x3)
% %y = X, .

or in briefj/ {
. 1 or ﬂ(é 2 [‘1 52

B T

Ay -’

o

and s, being the thicknesses, according to the glacitura , of the itwo sirate, and

8
1 4
1 and g being the correspording increments of the function f. OSince this holds for

all glaciture, if { is convex, then we must have:

[22.‘*;1 mxf

2
z8

1 and 1 being the thicknesses of thetwo strate according to a generic glacitura

and the maximum having been taken as the glsclitura amgeﬁ.(?) By considering successlve
gtrata we canstate inductivelys
{ﬁ% I}im {3. -mrgﬁp.»»m{:ﬂ 3
/5 0 . T a1

'ory in & different way:

2 s S 1% 6

sew HEX (..C%)

“a  ma, (73) . {0t}
or also
..,..2% = fl W(fg/ (3) .M(O’E/(2> & ose om(ﬁ/ﬂ“%}; ®
*n T8y 82 /M1 84 / bt SNy ’/,'gr;-ul

Since { } s being convex, is differentiable (except, at the most, for aéﬁi}%wmble infinity

of angular points which we shall later exclude fram acting as subdivisions for the strata)
and the derivative is increasing, we have: :
, = N 0[ . o( n=} & b ; i
(k) T BT T et Bl . Ao Sl A l/
‘ W % b °n /™

— .
that ist the ratlic between the derivative of £ (x) at two points whatever %, and Xy

CWEYEM

(xg > xl) is Z than the product ;/ «vs¢ GOrresponding to any subdivision /ixa\a)%mta of
the considered stratum and therefore it 1s also Z than ‘53} (x}m,xé)ﬁ MPJ// .o { as the

ﬁ}’l‘he existence of a maximum can be proved since we are dealing with convex functlions,



u?m

subdivision is convex and therefore it is 80y in particular, if ¢ 5 (x) is the solution

of theadifferential equation:
Prg )=k Elu,x) (k=g (x)
that is for:

(5) g (x) = }145 (x) = b+ e )” (%, » u) du.

It is enouch to puint out that the {5} is independent of the glacitura, that we can
deorive (4) from it directly for 8, corresponding to any glacitura, and that // v

is in 1t 21 (product of factors all 2 1): therefors the ratios of the increments,
and hence the derivatives are incressing,

Moreover we shall prove that SL'(F), determined by the profiles ‘[—'g (x), is minimal
convex {end therefore coincides s necessarily, with the solution which has been detere
mined in another way in section 3). It is enough toc prove that for f£(F) convex (and
having the contour values & and b in common with }b (P}s we cannot have in any point
Q, £(8) < ('//(22}; were it so and should we suppose § = F( Y’) ‘{"(ﬁ;} = q, then F(q)
would be < q while F(&) = a, F(b) = b, and hence there wouldexist p and r, axp<qar<,
such that ¥' (p) < F'(r). |
But in such & case £ §(x) = F <+§zx};, £1% x) =p (“Pg(x); L.D';{x), wd the ¢
ratio between the derivatives in two puints for which \P g (3!; } = 1, iﬂg (x,l) = r would be:

£ 5 (xgk ™ ﬁrﬁ‘(ﬁz”%) A (zs) <W g, x),

£ g' (2!1) F',(r)
therefore I 3 cannot ;aii&fy the prescribed condition,

It is well, to note, as & corollary, the following property which charascterizes the
minimal convex functionst ‘{) is minimal convex if and only if, for all ¥ increasing and
convex, £ = F (Y ) is convex.

It is often useful to replace the considerstion of W é {xl, 7‘2) which depends on the
level varieties ‘?l and ?2, on which max ; ® Xy, X3, and also on the glacitura g s by
the consideration of W(Vy, V) = max W § (%5 xzj glven bys

{6) W (V) V,) = sup, Fm(@
h



- il -

with the conventiens /r; g " 0’; 3 the remarkable intrinsic significance of ﬁ{’?l,vg)
is the following: the ratio fj' (=5)/ £ §'<x1) has a maximum = W (= if and only if

f is minimal CONVEX )

6. EXISTENCE OF CONVEX FUNCTIONS PR A GTVEN STRATIFICATION [

The fact which we are smdying » mw the exlstence of a, v f¢ convex -
CONTOUR SURFACES SR TS DEGeNELAPL Co ig{'ﬂi‘f at b
f“unetiﬁn with the given M-m%@s, ap;m&;:s now to be &vienslg%mﬂw the

& Q,!{,g&‘:ﬁ»'

%;ﬁ*ave m&w If W <K, there is no dan%er of &egmsmmsﬁ. }',f. W‘

‘*E (ﬁﬁz}““%y‘ it fi‘;ilwafb S (Rz)/‘ﬁ 5 (x1) == ¥ ek either \]D*j {xg)
= Sqor '70 é (11} =0 ( or bnth}; in sw:h conditions & convex function az&swemng the

problem in “the stratum (V1s Vo) may still exist (as in the example of figura *;L-
which we shall call hriefly example 1 for the s tratum naving a rounded profile),

but such a function cannot be found in & larger stratum.

ety

In order to have ’&"3 (%, xz) s oo, since W ; (xl, X,) = WE (xl’ x,&. (x,xg)
for any xl <X < Xpy W ; must be infinite for one at least of the twa subintervals;
- if we proceed in such a way it follows that there must be in (x}_, xa} a,‘x such that
W 5 (x', x®) = (and therefore W(V!,V") = O ) for every interval (x',x") containing
x.* h The corresponding level variety will be called exceptional; we can thus state that
in order to admit a convex function it is necessary that a convex stratification does
not contain any exceptional varlety inside the considered stratum (and it is sufficient
. that in sﬁdlmm mﬁz contour varieties should not be exceptional.)
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In order to mprehmé and to classify the "exceptionalitles" so defined, it is useful

to consider, in general, for every level variety Y, the lower bound of BV V), (v,

v* including V, )3 let us denote it by "W (V,)". We must always have W2 1 (W being
obviously 2 1); beside the case of the exceptional varieties, already considered,
where ¥ =0, we want to distinguish the cases of the reﬁlar varieties where W = 1,
and of the corner varieties, where ¥ 1 but finite. The ground for suech denominations

is self evident: we can apply the appellation tcorner® to those varieties of which




at least one profile has angular point ( W being themtio between the slope of the
tangents on the right and on the left, according to the profile which causes this ratio
to be a maximum). Analogously, for the sxceptionalvarieties, we have at least one

point where such a ratio becomes infinite, and the slope is necessarily zero on the left
if it is finite on the right, and infinite on the right if it is finite on the lsft.

Ve shall diétinguiah two cases of exceptionalities: we shall have neck variety,

when, by the thicknesses of two strata, we can already make the product
(1) w(@).m(q)-m("/z/‘fi}
e : 33 mm(aﬁj %)

as large as we want.,

Such & circumstance occurredin the examples 1 and 2 (sect: 2}: inside a stratum
taken as subtle as we want and including a neck we can always find two strats whose
thicknesses are such that their ratio, according to a giacitura, becomes &s small as
we want, compared to the giacitwra for which it is a maximum,

In the contrary case we shall have instability variefiies (8), which can be varieties

formed as accumulations of corner varieties (as in example 3 of section 2), but they
can also be inside a stratum where all other varieties are regular { it would be enough
in example 3 to ma‘ke the vertices of the neck round) (3) an aaeumx%ﬁ;gﬁim variety of
corner adge varieties is necessarily exceptional if the product of ﬁaeir W diverges,

in every neighborhood of it (see example 3), otherwise it can be also regular (we

would only need, always in the example 3, to make the notches more and more smoth),

Thisd enomination has been conceived in order %o notice how the thickness of a

subtle stratium fluctuates irregularly while we let it approach the same variety.
{ )(xae, for instance, figure 3).
9

Let us remark that the profile having notches (always in the example represented by

figure 3) can be altered in such a way as to have the second derivative exist and be

finite everywhere (though it is not bounded) and to let the exceptionality hold.

It is enough for instance to make the notches more and more smooth but not too quickly,
and precisely in such a way that the ratio between the slopes of two successive parts
approaches one, but the infinite product of these ratios diverges, (for instance the
ratio of the n.th notch = 1 + 1/n), while the width of the notches decreases in an
appropriate way ( for the same example, the width of the n®™ potch for instance of
‘the order of n-3/2), so that the order of magnitude of the distance from the point of
accumulation of the notches (remainder of the sequence) is superior to that of the

ascillatims of the slope in consequence of the notches (in the instance, n-1/2 in




or heving corner edge ( it would be enough, besides, to superpose an angularity).

7. PARTICULARITY OF BEHAVIGUR IN POINTS

¥hile conaidering the examples of section 2, we have spoken about notch points

(and not about notch varieties)s and in general all the considered possible ways of
behaviour are referred more specifically to 901&&@ of the varietlies where they appear.
First of all let ua acknowledge that on every level ?R?i%t? there are some points
‘whigh we shall c&ll hinge peints, definable , with r@g&rérta the minimal convex funotion

4/, by any one of the following conditions which are equivalent:

- if a tr&nsfﬁrma%ian f= ?UP§ causes the function £ not to be gonvex, there &re
some points P where £(P) is less than we would need to comply with the conditions
for convexity: we shall call hiﬁge points those for which this property holds
necessary as soon as it can be proved true for one only of the peints of the same
level variety;

- - by suppressing the constraint of respecting the stratification for the points of
a field C, the minimel convex function #) resulting may or may not be improvable:
precisely, it is improvable if all the hinge points P are inside C at least for
one level variety;

- ﬁhﬁ’§rafila corresponding to the %%ng&n% glacitura (or to one, at least of the

supporting glaciture) at the g&inﬁ‘?, has there a vanishing curvaturej

(9 continued)
comparison with n~l1). After thal we can connect two successive sides of the broken
line by curve arches (for inatance by parabolic archss of the third degree) exclud-
ing the sngular poinis; we obtain a curve having everywhere continuous first and
second derivatives, except for the point of apeumulation of the notches where the
gecond derivative exists (and is zero) but neither continuous (or bounded) in any
neighborhood. That proves, as we stated in the note (2), that we cannot suppress
the condition of the second derivative being bounded in enunciating that sufficient

. condition.

/7t is not a necessary condition, of course; it is not even necessary that the first
. or second derivation:shouldexist. Yet we can remark that differentiability alone
is enough to exclude the possibility of corner varieties (except, eventually, on
level varieties formed by <<stationary pointss>, L. e. with & vanishing first

derivation.)



==

for such a giacitura the lower bound of

il Joie Ll 0

Xz - %X

decreases to zero as the neighborhood xﬁ decreases Lo x {xl, X 0an be taken
around x = 5 ().
The last two formulizations are clearly equivalent, except for the geometric and
analytic expressionsy from the geosetric formulization it clearly follows that, by
making a profile concave in a point, the same mu.at. occur, on the level variety at
that point, for all the profiles having there a vanishing curvature,
Such & consideration leads us to prove the affimd existence of hinge points on
every level variety; we can have at least one glacitura for which

liming " £ B xR -1 -

B gk

(for X1» Xg, appoaching, respectively from the left and from the right, the x of the

considered level variety V).
In the contrary case we would have a number r >0 and a stratum containing Vo 8uch
that, for any glacitura f s X3 and Xx 3 being taken in such a stratum, the expression
of which we are considering the min. lim should result always > Y « It would then
bes

t.g_(fgl = ‘ﬁg(xl,xe)za»l* fozwxl)

(Pg - (3‘1} :
2 as constant :
and if we take f=F ( )D) = ‘P* 1/2 K LP (  being/s 03 F not convex| )

fgt(xz) \ t()ﬁ'(xg) : 1+K ‘Pé (x9) >{ 1+ Y'AX £ 1—)(45”5 >1*}/AK~M5//;

f; ’(“x‘l} ij'l (xl} 14—/( ‘;Vg (xl) 1“"/()‘/5 {xl) l“‘(g

and therefore i}‘ (Xg}/ g'(x}_) > 1 if X isamsll enough, Therefore kPia not minimal
convex (contradiction to the corollary of the section 6). Analogously on the neck

varieties there are neck points where ’%3 = &S, and on the corner varieties (or on

neck or instability varieties) there are corner peints where ‘@j;‘ 1 (by defining,
obviously W 5 in an analogous way as ¥, but from ’%} rather than from W),



