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ABSTRACT

In this expository paper we discuss the role of probability in statistical
physics: it should be that of a general tool guiding induction and must not
be restricted only to the empirical interpretation coming from its evaluation
by an observed frequency. It is true that in many cases the value of a prob-
ability can be sensibly expressed by a suitable frequency, but this does not
entail that the latter can be taken as definition of probability. Moreover, in
each situation in which one thinks that probabilities are physically real things
and believes that something which is only “very probable” can be regarded
as being “practically certain”, some “small” probabilities are actually ignored:
this attitude of mind may render illegitimate also the probabilistic interpreta-
tion of the relevant physical laws. A “law” which is based on a probabilistic
interpretation cannot aim at explaining why a fact that we forecast will occur,
but rather at explaining why we forecast that this fact will occur. Finally, we
emphasize the role of conditional probability, and we show that looking at it
from the right perspective also allows one to avoid classic paradoxical aspects
of quantum mechanics, without the need to resort to the interpretation based
on the dualism “particle – wave”.

1 From Boltzmann to de Finetti

The subject dealt with in this expository paper refers to a field in which many
difficult and subtle issues intertwine each other: so an effort to succeed in
pointing out and isolating what is the real core of probabilistic arguments in
physics is necessary. We will give up any discussion of specific intricate ques-
tions, in favour of a deepening of the intriguing side of the problem.
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Even if physicists became to think to nondeterminism around 1925-27
(“modern” quantum theory), statistical physics made its first steps in the
1850’s, with the formulation of the theory of heat.

Maxwell’s name is associated to the “ensemble” view of probability in sta-
tistical physics, but this approach was actually invented by Boltzmann (though
he is not always credited for it) and further developed by Gibbs. Boltzmann
advocated a time-average interpretation of probability, introducing the con-
cept of physical state, as given by a probability distribution.

This time-average notion of probability is closely related to a “statistical”
or “frequentist” probability, and Boltzmann claims that “the second law can
never be proved mathematically from the equation of dynamics alone” and
that it is a theorem of probability: so the observed regularity in the behavior
of gases is a statistical effect from a large number of molecules – sometimes
dubbed as “statistical determinism” (but – as we shall deepen in the sequel
– the role of probability is not to establish which previsions are “right”, but
which previsions are “sensible” according to our present knowledge).

Even the terminology may reflect the attempt to escape an actual dealing
with “uncertainty”, by an attitude toward a (putatively ...) “objective” view
of Science.

So, pursuing this myth of objectivity leads to “define” probability as “limit”
of the frequency when the number n of trials (performed, as it is said, “under
the same conditions”) increases (by the way, if the trials were really performed
under exactly the same conditions, they would always produce the same re-
sult!)

Let us just mention (we will not dwell on these aspects) that it is possible
– through the concept of exchangeability – to evaluate a probability tak-
ing into account suitable observed frequencies (relative to just a finite number
of trials) also in the framework of “coherence” – the leading concept of the
so-called “de Finetti’s subjective approach”1, where the meaning of the prob-
ability of an event is that of “degree of belief” in the verifiability of the event
(independently of its method of evaluation).

2 A general view of probability through coherence

An important issue of the previous discussion concerns the careful distinc-
tion that must be made between the meaning of probability and its methods
of evaluation: ignoring this distinction would be analogous to identifying the
concept of temperature with the number shown by a thermometer, so being
not entitled to speak of temperature in a room without a thermometer. This
confusion often appears not only in statistical physics: for example, we will
show that (putative) paradoxes similar to the classic ones arising in the statis-
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tical description of quantum phenomena are not typical of the way of thinking
required by quantum theory.

Consider also the following example: we can test a given object to find out
at what temperature it melts or under what pressure it splits, but we clearly
cannot carry out both these tests. This may be misinterpreted as a paradoxical
situation only if we pretend to express it by saying loosely that “it is mean-
ingful only to ask whether the given object is either refractory or robust, but
not to ask these questions together”. In other words, though the critical cases
of quantum theory have nothing essentially different from the latter example,
they look like paradoxical only when one refers to concepts and situations for
which it seems “more natural” to expect an answer concerning some “com-
posite” question (as it was for position and momentum before the advent of
Heisenberg’s uncertainty relation).

Before proceeding further in the discussion, it is essential to make a digres-
sion on probability theory through the concept of coherence .

Coherence allows you to assess your probability for as many or as few events
as you feel able and interested, possibly then going on by extending it to fur-
ther events. This has many important theoretical and applied consequences:
for example, the axiomatic counterpart of de Finetti’s theory is weaker than
the traditional Kolmogorov’s approach and makes simpler and more effective
the “operational” aspects.

An event can be singled-out by a (nonambiguous) proposition E, that is a
statement that can be either true or false (corresponding to the two “values” 1
or 0). Since in general it is not known whether E is true or not, we are uncer-
tain on E. Classical examples of events are: (i) any proposition that describes
the so-called “favorable” cases to a possible outcome E, a situation which is
typical in the well known classical (or combinatorial) approach to probability;
(ii) given a (finite) sequence of trials performed “under similar conditions”,
any proposition describing a possible result occurring in each trial (frequentist
approach); but notice that an event is also anything else that can be ex-
pressed by a sensible proposition.

Probability is looked upon as an “ersatz” for the lack of information on
the actual “value” (true or false) of the event E, and it can be regarded as
a measure of the degree of belief in E held by the subject that is making
the assessment. In particular, the two most popular approaches to probabil-
ity may be taken just as useful methods of evaluation (when we judge that
a suitable “symmetry” exists allowing an assessment based on combinatorial
considerations, or that the different trials needed for a frequentist assessment
are performed under “similar” conditions). Notice that an uncertain event E
may become true (e.g., statistical data), so reducing to the certain event Ω ,
or become false (when its contrary Ec is true), so reducing to the impossible
event ∅.
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In general, it is not enough directing attention just toward an event E in
order to assess “convincingly” its probability, but it is also essential taking into
account other events which may possibly contribute in determining the “in-
formation” on E. Then the fundamental tool is conditional probability, since
the true problem is not that of assessing P (E), but rather that of assessing
P (E|H), taking into account all the relevant “information” carried by some
other event H (possibly corresponding to statistical data, necessarily regarded
as “assumed” and not as “acquired”: for a clarification of these two terms, see
Sect.6).

Dealing with conditional probability requires the introduction of condi-
tional events E|H, with H 6= ∅. The usual interpretation in terms of a betting
scheme is the following: if an amount p – taken as the value of P (E|H) – is
paid to bet on E|H, we get, when H is true, an amount 1 if also E is true (the
bet is won) and an amount 0 if E is false (the bet is lost), and we get back
the amount p if H turns out to be false (the bet is called off). In short, the
(random) value taken by E|H is just the amount got back when one bets on
it by paying an amount p. In particular, an (unconditional) event E can take
only two values (1 or 0) and can be looked on as E|Ω, where Ω denotes the
certain event. (It is also possible to consider a “scale factor” λ, i.e. to pay pλ
and receive – when the bet is won – an amount λ: we were referring above to
the case λ = 1). For a deeper discussion of these foundational aspects, see the
expository paper2.

The point of defining probability (conditional or not) in terms of bets is to
give it an unmistakable, concrete and operational meaning, valid for any kind of
event, not only those corresponding to the classic combinatorial or frequentist
evaluations. You may assess its probability however you like: obviously, you
are not allowed to violate the relevant syntactic rules! These come out from
the following framework: let C be an arbitrary family of conditional events and
P a real function defined on C. Given any finite subfamily

F = {E1|H1, . . . , En|Hn} ⊆ C ,

we put P (Ei|Hi) = pi for i = 1, . . . , n. Then, denoting by b the indicator
function of an event B, we consider the random quantity

G =
n∑

i=1

λihi(ei − pi) ,

which can be interpreted as the gain corresponding to a combination of n
bets of amounts p1λ1, . . . , pnλn on E1|H1, . . . , En|Hn, with arbitrary real stakes
λ1, . . . , λn. Denoting by H0 the union H1∪ . . .∪Hn and by G|H0 the restriction
of G to H0, we have the following

Definition – The real function P on C is coherent if, given the assessment
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P = (p1, . . . , pn) on each finite family F ⊆ C, with pi = P (Ei|Hi), for every
choice of the real numbers λ1, . . . , λn the possible values of the corresponding
gain G|H0 are neither all positive nor all negative.

Notice that this view is based on hypothetical bets: the force of the argu-
ment does not depend on whether or not one actually has the possibility or
intends to bet. In fact a method of assessing probabilities making one a sure
loser or winner if he had to gamble (whether or not he really will act so) would
be suspicious and unreliable for any purposes whatsoever.

Remark – As we will discuss in Sect.5, coherence of P implies that it
satisfies the axioms of a conditional probability: but the introduction of these
syntactic rules through coherence allows a “wider” semantic interpretation of
P as a (subjective) “degree of belief” (possibly, but not necessarily, evaluated
by a suitable frequency).

3 Probability in Statistical Physics

It is important to underline that a strict frequentist approach (in the attempt
to “define” – and so to identify – probability with the “limit” of a frequency)
does not avoid the subjective aspects, but just ... hides them. In fact the actual
frequency observations can refer only to a finite number of trials, and so
the introduction of the frequency as a “limit” is made under the assumption
that this limit should be practically equal to the observed frequency: yet this
circumstance cannot be considered “certain”, but only “a highly probable”
event, where the meaning of “probable” is necessarily nothing else than that
based on a degree of belief, as in the subjective approach. But the latter is just
the meaning that one would – by resorting to the frequency evaluation – aim
at avoiding ...!

Moreover, all the properties (and the relevant formal calculations) concern-
ing the “limit” frequency (identified with the probability) can be interpreted
in real situations only by carrying out the reverse procedure, i.e. through the
approximation of the “limit” frequency by the frequency relative to a “very
large number” of trials (actually assuming as “highly probable” – again – the
validity of this approximation).

In other words, we have the following alternatives:

(α) Either the “limit” frequency does not exist,

or it exists (and so, beyond a suitable no – which is, by the way, unknown! – the
observed frequency coincides with the “limit” frequency within an arbitrarily
preset level ε > 0 of approximation) and we can then distinguish two situations:
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(β1) either the number of observed trials is not sufficient (smaller than no),

(β2) or these trials are enough (at least no).

Clearly, in the first two cases (“limit” frequency nonexistent or number
of trials less than no) we cannot conclude anything. To make significant the
conclusions that could be drawn in the case (β2), we need assuming that this
case is “much more probable” than the other two (and the only meaning of
“probable” can be – again – the most general one as degree of belief).

Therefore a strict frequentist view, as that often accepted in Statistical
Physics, cannot avoid a subjective framework; moreover, it ends up by trans-
ferring the reasoning from practically verifiable events (such as a frequency on
a finite number of trials) into fictitious entities, practically out of control
and absolutely indeterminate. In other words, it needs resorting to two un-
justifiable (and inconclusive) arguments: firstly from a finite framework to an
infinite one (the putative existence of the “limit” frequency); and then from
an infinite framework to a finite one (as an approximation for “large” n).

A possible objection to the above argument concerning the interpretation
of a strict frequentist view of probability, could be the following.

From an empirical point of view, every highly probable event should be
looked on as being practically certain, and probability theory should consti-
tute an ideal scheme, where the agreement with empirical observations may be
found only in an approximate way.

In other words, in every experimental science there is a theory that says
how facts should occur, and an empirical postulate which states that they ac-
tually happened approximately that way.

But this seeming analogy is devoided of any value, since there would be
analogy only if probability theory had some theorem stating, for example, that
– the two outcomes being equiprobable – 500 out of 1000 tosses of a coin will
show “head” and 500 “tail”, while in practical experiments we were finding
instead that this conclusion is, almost always, only approximately true. But
in probability calculus is actually the very theory that cannot deny the possi-
bility of all frequencies, since every frequency is compatible with all possible
assessments of the probability of its occurrence: uncertainty is in fact inside
the theory, while in other sciences it depends on the faulty agreement between
theory and empirical facts.
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4 “Small” probabilities and “falsification”

Even if it is true that in “many” cases the value of a probability is “very near”
to a suitable frequency, in every situation in which something “very probable”
is looked on as “practically certain”, there are “small” probabilities that are
actually ignored, so making illegitimate also any probabilistic interpretation of
physical laws. For example, a probabilistic explanation of the diffusion of heat
must take into account the fact that the heat could accidentally move from a
cold body to a warmer one, making the former even colder and the latter even
warmer. This fact is very improbable only because the “unordered” configu-
rations (i.e., heat equally diffused) are far more numerous than the “ordered”
ones (i.e., all the heat in one direction), and not because unordered configura-
tions enjoy some special status.

Ruling out the possibility of those cases which seem “exceptional”, in no
way “improves” the probabilistic explanation (by somehow making it simpler,
or “more scientific”): on the contrary, it is a way of denying it.

We could say that a “law” which is based on a probabilistic interpretation
does not play the role of explaining why a fact that we forecast will
occur, but rather of explaining why we forecast that a fact will occur (it
is not a pun, but the essence of the argument!): when we press “at random”
18 keys on a typewriter, we are not able to explain why the statement “to be
or not to be” has not been written (no “physical” cause ...); on the contrary,
while forecasting the occurrence of any one of all other sequences, we cannot
consider it impossible that “to be or not to be” could come out: in fact, if
we were arguing in this way, it would mean also denying the possibility of
explaining why we got just that sequence which we actually got – since it had
the same probability as that piece of “Hamlet” of being typed.

So, why it is so difficult to see that piece by Shakespeare coming out –
or else: to see water freezing on the fire – even in a long series of repetitions
of the relevant procedure? It is just because their “waiting times” (inversely
proportional to the corresponding probabilities) are extremely large.

Notice that the difference between an impossible fact and a possible one –
also with a very small probability, or even zero (it is well-known that we may
have “many” possible events with zero probability) – is really enormous, since
it is not a matter of a numerical difference, but of a qualitative (i.e., logical)
one. Acceptance of the probabilistic interpretation of a class of phenomena
entails that what we state must not be regarded as necessary, but instead re-
garded as only probable (even if “highly probable”). So it is not a question of
asserting the existence of exact laws which are obeyed only approximately: one
must consider as “natural” (i.e., not impossible) also departures from any rigid
law, occurrence of fluctuations, the effect of possible discontinuities,... and so
on. In fact the history of science offers many examples of important discov-
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eries that had their origin in the perception of someone who saw a (possibly
small) unexpected variation in his data. In conclusion: a probabilistic law can-
not be falsified (in the sense of Popper); it may possibly be modified, if one
thinks that the new one is a better model (a sort of “updating”, in the sense of
Bayesian inference). For example, if after 200 draws from a box containing 90
balls numbered from 1 to 90 the outcome 27 did not occur (an event which is
not so rare, as the gamblers of Italian lotto know ...), is there someone willing
to modify the “probabilistic law” stating that the probability of the outcome
27 is 1/90?

An interesting example is dealt with in a paper by Jaynes3, who claims
that what happens in the real world is on the level of ontology (i.e., it has
an “objective” existence), while “what we can predict depends on our state of
knowledge and is necessarily on the level of epistemology”. He consider the
status of the second law in biology, which exhibits some mysteries (to one who
thinks that probabilities are physically real things): he makes a detailed study
of a seeming contradiction between animal muscle efficiency and the second
law, arguing against the “tendency to disorder” acritically attached to the sec-
ond law (Nature has no way of knowing what we consider “orderly”).

Jaynes’ paper contains not only a detailed discussion, but also detailed com-
putations to show that a living cell (like a muscle) does not violate the second
law, if the latter is suitably interpreted: in fact its behaviour arises from a
deep interplay between the epistemological macrostate (i.e., the variables like
pressure, volume, magnetization, that an experimenter measures and which
therefore represent our knowledge about the system) and the ontological mi-
crostate (the coordinates and momenta of individual atoms, which determine
what the system will in fact do). The initial microstate is unknown because
it is not being controlled by any of the macroscopic conditions. The essential
conclusion of Jaynes is that the increase of entropy cannot be an ontological
statement (i.e., a deductively proved consequence of the laws of physics): in-
stead of committing the error of supposing that a given physical system has
one and only one “true” ontological entropy, we must recognize that we could
have many different states of knowledge about it, leading to many different
entropies.

5 Conditional probability

Another important aspect to be dealt with is the following: seemingly paradox-
ical situations may depend on the arbitrary identification of mutually exclusive
conditional frequencies with a (unique) conditional probability function. The
perspective under which the problem will be discussed is essentially based on
a statement which is, in a sense, very obvious, namely: one should be care-
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ful when applying the rules of probability theory to observed frequencies (in
general, and so in particular when the latter refer to mutually incompatible
experiments).

Definition – Let E and H be two arbitrary families of events, with Ω ∈ E
and ∅ /∈ H. A nonnegative function P (·|·) is said a weak conditional probability
on E ×H if

(a) for any given event H ∈ H and n mutually exclusive events A1, ..., An ∈
E such that also their union belongs to E , the function P (·|H), defined on E ,
satisfies

P ((
n⋃

k=1

Ak)|H) =
n∑

k=1

P (Ak|H) , P (Ω|H) = 1 ;

(b) P (H|H) = 1 for any H ∈ E ∩ H ;
(c) given E, H, A such that E ∈ E , A ∈ E , E ∩ A ∈ E , H ∈ H and

E ∩H ∈ H, then

P (E ∩ A|H) = P (E|H)P (A|E ∩H) .

In particular, choosing H = {Ω} and putting P (E|Ω) = P (E) for any
E ∈ E , the function P is said a weak probability if condition (a) holds. Notice
also that (c) reduces, when H = Ω, to the classic product rule for probability.

From (a) and (c) it follows easily, for any two events E and H:

(∗) P (E) = P (H)P (E|H) + P (Hc)P (E|Hc) ,

or, more generally, given any partition {Hr , r = 1, 2, ..., n} of the certain event

P (E) =
n∑

r=1

P (Hr)P (E|Hr) .

We referred to an arbitrary set C = E×H of conditional events, with no un-
derlying structure. The function P is called a (finitely additive) conditional
probability when E is an algebra and H ∪ {∅} is a subalgebra of E .

The following results are well known (see4,5,6):
(i) a conditional probability is coherent;
(ii) coherence of a function P on an arbitrary family C of conditional

events entails that P is a weak conditional probability on C (so that the “ax-
ioms” (a), (b), (c) play the role of necessary conditions for coherence).

(iii) if C is a given family of conditional events and P a corresponding
assessment, then there exists a (possibly not unique) coherent extension of P
to an arbitrary family G of conditional events, with G ⊇ C, if and only if P is
coherent on C.

It follows easily (just referring to the minimal algebra containing C) that:
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(iv) a function P on C is coherent if and only if P is the restriction of
a conditional probability.

This statement singles-out the syntactic part of the concept of coherence.
So it is possible to assess your degrees of belief on the basis of the syntactic
rules, with no reference to the device of betting.

Notice that, since P can be directly introduced as a function whose domain
is an arbitrary set of conditional events, bounded to satisfy only the require-
ment of coherence, P (E|H) can be assessed and makes sense for any pair of
events E, H, with H 6= ∅, and, moreover, the knowledge (or the assessment) of
the “joint” and “marginals” probabilities P (E ∩H) and P (H) is not required.
In particular, there is no need, as in the usual approach – where the condi-
tional probability P (E|H) is introduced by definition as the ratio between the
probabilities P (E ∩ H) and P (H) – of assuming positive probability for the
given conditioning event.

If we refer just to a single event, its probability can be assessed by an ob-
served frequency in the past (since a frequency is a number between 0 and
1, and this is a necessary and sufficient condition for coherence when only a
single event is considered). But things are not so easy when more than one
event (conditional or not) is involved, since consistency problems (coherence!)
must then be taken into account.

6 Misunderstandings in conditional events and probabilities

Some fundamental remarks are now in order. First of all, notice that property
(c) of conditional probability is crucial in order to fully exploit its inferential
meaning. In fact, what it is usually emphasized is only the role played by
property (a) – i.e., a conditional probability P (·|H) is a probability for any
given H ∈ H. For example, in the jargon of quantum probability, the set H
is called the family of preparations and it is the physical counterpart of the
notion of “conditioning”: a probability P (E|H) is interpreted as the (approx-
imate) relative frequency of the event E in an ensemble of systems prepared
in such a way that the event H is certainly verified for each of them. This
is a very restrictive (and misleading) view of conditional probability, corre-
sponding trivially to just a modification of the so-called “sample space” Ω. It
is instead essential – for a correct handling of the subtle and delicate problems
concerning the use of conditional probability – to regard as a “variable” also
the conditioning event H. In other words, the “status” of H in E|H is not just
that of something representing a given fact, but that of an (uncertain) event
(like E) for which the knowledge of its truth value is not necessarily required.

In order to see the problem from a different perspective (and also in a con-
text which has nothing to do with statistical physics or quantum mechanics),
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we discuss some fundamental remarks (see7, p.284) concerning, for a given
conditional event H|E, the “information” represented by E: the main point is
a distinction between “assumed” and “acquired” E. For example, in Bayesian
inferential statistics, given any event H (seen as hypothesis), with prior prob-
ability P (H), and a set of events E1, ..., En representing the possible statistical
observations, with likelihoods P (E1|H), ..., P (En|H), all posterior probabili-
ties P (H|E1), ..., P (H|En) are usually pre-assessed through Bayes’ theorem
(which, by the way, is a trivial consequence of conditional probability rules).
In doing so, each Ek (k = 1, ..., n) is clearly regarded as “assumed”. If an
Ek occurs, P (H|Ek) is chosen – among the prearranged posteriors – as the
updated probability of H: this is the only role played by the “acquired” in-
formation Ek (the sample space is not changed!). In other words, the above
procedure corresponds, putting P (H|Ek) = p, to regard a conditional event
H|E as a whole and interpret p as – look at the position of the brackets! –
“the probability of (H given E)” and not as “(the probability of H), given E”.
On the other hand, the latter interpretation is unsustainable, since it would
literally mean “if E occurs, then the probability of H is p”, which is actually
a form of a logical deduction leading to absurd conclusions.

For example, consider a set of five balls {1, 2, 3, 4, 5} and the probability
of the event H that a number drawn from this set at random is even (which
is obviously 2/5): this probability could instead be erroneously assessed (for
instance) equal to 1/3, since this is the value of the probability of H condition-
ally on the occurrence of each one of the events E1 = {1, 2, 3} or E2 = {3, 4, 5},
and one (possibly both) of them will certainly occur.

7 Probability and urns

Let us now discuss the following example (our discussion has a close connection
with a famous statement – “Probability does not exist” – put at the very begin-
ning of his book by B. de Finetti1 (1974, Preface): in spite of its provocative
and striking flavor, it is not difficult to encounter real and very simple accom-
plishments of that statement). Take a box with a given number N of balls:
each one is either white or black, but the actual composition of the box (i.e.,
the number r of white balls and hence that N − r of black ones) is not known.
Consider the random experiment consisting in drawing one ball from it: how
to assign a probability to the event (denoted by E) “the ball drawn from the
box is white”? A strict supporter of probability measured only by means of
an observed frequency, could make the choice of simply ignoring the fact that
the composition of the box is unknown: given a “sufficiently large” natural
number no , he could perform the experiment consisting of no drawings with
replacement from the box and evaluate (a posteriori) the required probability



Transport Theory and Statistical Physics, 29 (2000), 107–123 118

by the ratio between the observed number X of white balls and the number
no of drawings. But he is not willing to assign any a priori probability to E:
for him this probability does not exist, since he does not acknowledge E as
an event.

De Finetti’s position is that in principle no distinction can be done, since
probabilities exist only inasmuch as one creates them as useful substitutes for
a lack of information about something (namely, for uncertainty): no “physi-
cal” or combinatorial interpretation is needed (though they are not forbidden,
under suitable constraints). Given any set of events whatsoever (recall – see
Sect.2 – that our concept of event identifies it with a proposition, and not nec-
essarily with a subset of the so-called “sample space”), coherence essentially
imposes on the probabilities that may be assigned to them the only restriction
that they must not be in contradiction amongst themselves, according to the
aforementioned syntactic rules.

So in the example under consideration we may assign a probability distri-
bution to the possible compositions of the box, i.e. to the N + 1 events “there
are r white balls in the box”, with r = 0, 1, 2, ..., N , and so, denoting by Hr

these events and introducing suitable conditional probabilities P (E|Hr), the
probability of E can be represented by

(1) P (E) =
N∑

r=0

P (Hr)P (E|Hr) .

In particular, we may assume (for example) that the given box has been chosen
at random among N +1 boxes corresponding to all possible compositions: then
formula (1) takes the simpler form

P (E) =
N∑

r=0

1

N + 1
P (E|Hr) .

On the other hand, evaluating, for each given r,

(2) P (E|Hr) =
r

N
,

we may conclude, by straightforward computations, that

(3) P (E) =
1

2
.

Notice that the previous frequentistic evaluation of the probability of the event
E by means of experiments producing the ratio X/no is in fact an evaluation of
the conditional probability P (E|Hr) corresponding to the given but unknown
r: so “in the long run” (no “sufficiently large”) the observed frequency takes
(approximately) the value (2). Instead the value (3), which is a perfectly legit-
imate and sensible evaluation of the probability of E (even if someone could
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prefer to speak of an a priori evaluation), should be regarded as unacceptable
from the point of view of a strict frequency interpretation of probability: in
fact the drawings (with replacement) from the given box will almost certainly
give a frequency near to the value (2), and so different from 1/2 (except in
the particular case in which the number r of white balls was about half of the
total number N of balls).

8 Is frequency a coherent extension?

Observed frequencies (pertaining to different experiments) may not be neces-
sarily identified with (and so used to compute) probabilities, and the previous
discussion can be seen as an instance of the problem of finding a coherent ex-
tension of some beforehand given probabilities (see result (iii) in Sect.5!).

Interpreting E as E|Ω and Hr as Hr|Ω, it is easily seen that the value P (E)
given by (1) is a coherent extension of the conditional probabilities P (E|Hr)
and P (Hr|Ω), while in general a value of P (E) obtained by measuring a rel-
evant frequency may not. In other words: while a convex combination (a
sort of “weighted average”) of conditional probabilities can be – see eq.(1) – a
probability, a convex combination of conditional frequencies is not a frequency
(furthermore one apt to evaluate a particular probability ...).

Therefore, if in some applications (quantum mechanics, drawings balls from
boxes, or anything else) one introduces a “probabilistic” model whose corre-
sponding function P fails to satisfy (for one or more events) even only one
of the conditions (a), (b), (c), then necessarily P is not coherent, and so it
should be clear that any attempt at accepting P as a sort of “new kind of
probability” necessarily amounts to deny and getting rid of the very concept
of conditional probability.

9 Probability in Quantum Mechanics

Let us now consider the following example. Take as “physical system” a ball
drawn from a box U of unknown composition containing 4 balls, each one being
either white or black; as “final state” take

A = a ball drawn from the box U is white.

The given “experimental situation” is the following: we have built up the
given box by taking a box K of known composition with 3 balls (2 black and
1 white), and inserting in it one more ball (taken at random from a bag con-
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taining an equal number of black and white balls) without looking its colour.
To alter the experimental conditions we may consider as a “suitable device”
just looking at the colour of the inserted ball. Then put

S1 = the inserted ball is white ,

S2 = the inserted ball is black .

Notice (cfr. the beginning of Sect.6) that A, S1, S2 correspond to uncertain
events, and not just to given facts.

Now consider a large number of drawings with replacement from the given
box (i.e., that with 4 balls) under the situation Si (i = 1, 2): evaluating the
(conditional) probability of A by the observed frequency gives, “almost cer-
tainly”,

P (A|S1) =
1

2
, P (A|S2) =

1

4
.

On the other hand

P (S1) = P (S2) =
1

2
,

so that we should have, by (?),

P (A) = P (S1)P (A|S1) + P (S2)P (A|S2) =
1

2
· 1
2

+
1

2
· 1
4

=
3

8
.

Can the above value be really equal to P (A)? Notice that the assessment
of P (A) requires referring to a single experiment and that the colour of the
inserted ball is not known. But pretending an “experimental measure” of
P (A), necessarily obtained by drawing with replacement a large number of
times from the given box U, leads to a “long run” observed frequency that is
almost certainly equal either to 1/2 or to 1/4, and not to 3/8 .

So a strict frequentist evaluation makes the latter value meaningless, since
the box contains either 1 or 2 white balls out of 4. In conclusion, the lack of
validity of formula

(4) P (A) = P (S1)P (A|S1) + P (S2)P (A|S2) ,

depends on the identification of the probabilities P (A|S1) and P (A|S2) with ob-
served frequencies (corresponding to different and incompatible experiments),
each one referring to a different box obtained by inserting a given ball (whose
colour, white or black, is known) in the box K initially containing three balls.

Nevertheless these experiments are not (so to say) “mentally” incompatible
if we argue in terms of the general interpretation of probability (for example,
P (A|S1) is the degree of belief in A under the assumption – not necessarily an
observation, but just an assumed state of information – “S1 is true”): then, for
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a coherent evaluation of P (A) we must necessarily rely only on the above value
obtained by resorting to the second member of (4), even if such probability ...
“does not exist” (in the sense, already discussed at the beginning of Sect.7,
that it does not express any sort of “physical property” of the given box).

Also in quantum mechanical experiments, the identification of (conditional)
probabilities with some statistical data (essentially, observed frequencies) may
lead to results which are in contradiction with other experiments (still involv-
ing observed or expected frequencies).

The classical two-slit experiment, discussed from a probabilistic point of
view by Feynman8(1951), is an interesting illustration of the quantum me-
chanical way of computing the relevant probabilities: our interpretation in
term of coherent probability has been already discussed in Scozzafava9(1991).

A source emits “identically prepared” particles toward a screen with two
narrow openings, denoted S1 and S2 . Behind the screen there is a film which
registers the relative frequency of particles hitting a small given region A of
the film. Measurements are performed in three different physical situations:
both slits open, only slit S1 open, only slit S2 open.

Let us introduce, for a given particle, the following event, denoted (by
abusing notation) by the same symbol of the corresponding physical device:

A = the particle reaches the region A ,

and, for i = 1, 2, the following two events:

Si = the particle goes through slit Si .

Moreover, since all the particles are identically prepared, we shall omit the
further symbol H (referring to preparation) in all conditioning events.

The aforementioned experimentally measured frequencies are usually iden-
tified, respectively, with the three probabilities P (A), P (A|S1) and P (A|S2).
Repeated experiments can be performed letting a particle start from the source,
and then measuring its final position on the film, to determine whether it is in
the region A or not; moreover we could “measure” P (A|S1) or P (A|S2) letting
be put in function an experimental device allowing the particle going to hit
the region A only through the slit S1 or only through the slit S2. The latter
corresponding frequencies (of going through the relevant slit) are also iden-
tified with the probabilities P (S1) and P (S2). Now, irrespective of whether
the device has been activated or not, and of what was the issue in case of
activation, we may obviously write eq.(4), which is (as it has been exhaus-
tively discussed) an elementary property of probability, easy consequence of
axioms (a) and (c). Instead physical experiments give an inequality between
left and right hand side of (4), but this circumstance cannot be used to
“falsify” anything, since it refers in fact only to observed frequencies.
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Those who consider this phenomenon as strictly peculiar to quantum physics,
as Jordan10(1926), try to relate it to the well-known anomalies encountered in
situations where, depending on the relevant specific aspects, either the so-
called “particle interpretation” or the so-called “wave interpretation” is more
appropriate. For example, in this experiment an interference could be ex-
pected from a wave motion going simultaneously through both slits. However
a classical wave motion cannot explain the phenomenon, since it is possible to
let only one particle at a time reach the apparatus, and still the measurements
show an inequality holding in place of (4).

In more general terms, we have essentially a physical system that may reach
a final state under a given experimental situation, which in turn can be altered
by activating a suitable experimental device. (In the case of the two-slit exper-
iment, the particle can be regarded as a system whose final state is its reaching
the region A of the film under the given experimental situation corresponding
to both slits open; it can be altered by activating a device letting only slit S1

or only slit S2 open).
The above situation has an elementary analogue in the example discussed

at the beginning of this Section, where there is no quantum effect to which the
lack of validity of formula (4) could be ascribed: notice that we adopted the
same notation and symbols, to help the identification of similar corresponding
events. Clearly, in the case of both slits open, if we look at P (A) by refer-
ring to a single particle, we can argue as in the aforementioned example. On
the other hand, referring to repeated experiments, much care is needed when
dealing with frequencies and (conditional) probabilities: making computations
of a conditional probability by the frequency relevant to a given experiment
involves (so to say) a choice, in the sense that it is no more allowed to consider
– in the same framework – other experiments, otherwise the rules of condi-
tional probability (in particular, those referring to a “variable” conditioning
event) could be violated. Not to mention that this choice – as it has already
been discussed in the beginning of Sect.6 – appears as a very particular case
of conditioning, whose meaning is just that of changing the sample space.
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