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Structure of talk:

• Main part: dependence properties and some

inequalities related to representations of ex-

changeable random variables. Such construc-

tions arise as (asymptotic) distribution in statis-

tics, reliability theory models, etc.

• A game example.

• A short historical part: games and de Finetti’s

definition of probability.

1



de Finetti’s definition of proba-
bility:

inconsistency in the odds (given by the book-

maker) means that a combination of bets can

be devised in such a way that someone is cer-

tain to win whatever happens. This is called

Dutch Book. (?)

Example of inconsistency: E1 ∪E2 = Ω, and

a bookmaker sets odds P (E1) = P (E2) = 1/4;

if I bet $1 on each event, I pay 1/4+1/4 = 1/2

and I win at least 1 with certainty.

”The condition of consistency [of odds or

probabilities] is the sole basis on which the

whole theory of probability rests ... consists

in allowing no chance of a Dutch Book occur-

ring....”

( Intransitive preferences⇒ possibility of Dutch

Booking.)
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A more formal definition:

The real-valued function P on E is said to be

a probability on a class of events E if, for any

finite subclass {E1, . . . , En} of E and any choice

of real numbers c1, . . . , cn the payoff G(ω) =

G(E1, . . . , En; c1, . . . , cn) =:
∑n

k=1 ck[1Ek
(ω)−P (Ek)]

satisfies

infω∈{E1,...,En}G(ω) ≤ 0 ≤ supω∈{E1,...,En}G(ω).

(see Cifarelli and Regazzini 1996).

Example: E1
⋂

E2 = ∅, P (E1) = P (E2) = 3/4

⇒ inf G(E1, E2 : −1,−1) = 1/2
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Using probabilities to define a simple game:

Colonel (B)lotto games: players A and B choose

a marginal distribution X ∈ F and Y ∈ G re-

spectively; values are drawn (independently or

...) and the winner is the larger. (Borel 1921,

Robertson, 2006, Hart 2006).

Payoff=Probability of win = P (X > Y ).

Pure strategy: choice of a distribution.

de Finetti defined probability by payoffs; here

we reverse his thinking and define payoff as the

probability P (X > Y ); it is a zero (fixed) sum

game.
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RIDDLE:

Consider the following game (Kaminsky, Luks,

Nelson, 1984).

Two teams of gladiators A = {ai}, and B =

{bj}. Each round a gladiator is selected from

each team with strengths ai and bj, and the

first wins with probability ai
ai+bj

. The winner

stays on his team with the same strength.

A team loses when all members are dead.

Question: What order is optimal? Should you

send your stronger gladiators first? If you man-

age team A, how does your order depend on

b?
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Main part

Four types of exchangeable constructions:

(ℵ), (i), ,(ג) (k), and related notions of depen-

dence and inequalities

(Finitely) exchangeable random variables ap-

pear as models in statistics, reliability (e.g.,

Spizzichino, 2001), game theory, etc. Below

are some representation formulas for such vari-

ables, and examples of related inequalities and

dependence properties.

Let (ℵ) h(x1, . . . , xn) =
∫

f(x1, θ) · · · f(xn, θ)dµ(θ)

be the density function of X = X1, . . . , Xn.

Then the components of X are positively de-

pendent in the sense that Cov(Xi, Xj) ≥ 0,

Cov(h(Xi), h(Xj)) ≥ 0 for h increasing, but

P (X1 > c1, . . . , Xn > cn) ≥ ∏
P (Xi > ci) only

if c1 = . . . = cn no Positive Quadrant Depen-

dence.
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Definitions:

A function f(x),x ∈ Rn is supermodular if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y).

Then g(x) = ef(x) is FKG (TP2 if n = 2,

MTP2, Affiliation).

(ℵ) ⇒ if f(x, θ) is TP2 then h is MTP2 (FKG)

⇒ very strong positive dependence of X.

Example : fθ(x) corresponds to Bernoulli or

Binomial(m, θ), Poisson(θ), Γ(θ, β), or Γ(α, θ)

with density fθ(x) ∼ xα−1e−x/θ ;

so h MTP2 also if fθ(x) ∼ xα−1e−xθ.
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A strong notion of positive dependence: the

components of X are Associated if

Cov(ϕ(X), ψ(X)) ≥ 0 for any increasing ϕ and

ψ, and weakly Associated if

Cov(ϕ(XA), ψ(XB)) ≥ 0 for disjoint sets

A and B ⊆ {1, . . . , n}. Negative Association

(Joag-Dev and Proschan (1983)), if the last ≥ is

reversed.

MTP2 ⇒ Association.

Majorization: We say a ≺ b if a(k)+ . . .+a(n) ≤
b(k) + . . . + b(n) ∀k with equality for k = 1.

If a ≺ b ⇒ ψ(a) ≤ ψ(b) we say that ψ is Schur

convex. ⇒ ψ is symmetric (permutation invariant)
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Theorem (Christofides and Vaggelatou, 2002)
X weakly associated and the components of X∗
are independent having the same marginals as
X, then Ef(X∗) ≤ Ef(X) for any supermodular
f .

Example: If f(X) = IX(k)>t+ . . .+ IX(n)>t, then
−f is supermodular, and therefore
FX(k)

(t)+. . .+FX(n)
(t) ≤ F ∗X(k)

(t)+. . .+F ∗X(n)
(t).

⇓
EX(k) + . . . + EX(n) ≤ EX∗

(k) + . . . + EX∗
(n).

⇓
(EX(1), . . . , EX(n)) ≺ (EX∗

(1), . . . , EX∗
(n)).

Theorem (Shaked 1977) The latter majoriza-
tion relation is implied by (ℵ).

Remark: (ℵ) does not imply (weak) Associ-
ation nor supermodular order relative to iid
(the function h(x1)g(x2) with increasing h, g is
supermodular, so supermodular order implies
PQD).
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A more general exchangeable density: Condi-

tional independence of non iid variables.

Let (i) h(x1, . . . , xn)

=
∫

f(x1, θ1) · · · f(xn, θn)g(θ1, . . . , θn)dθ

be the density function of X = X1, . . . , Xn,

where g is a symmetric (exchangeable) mul-

tivariate density.

Does not imply positive correlations.

If all f(x, θi) TP2 and g(θ) MTP2, then so is

h.

Example:

fθ(x) = e−θ θx

x! ∼ Poisson = ϕx(θ) ∼ Γ(x+1,1).

Note:
∫∞
o ϕx1(θ)ϕx1(ϑ−θ)dθ ∼ Γ(x1+x2+2,1)

- semigroup property.

Claim: with TP2 and the semigroup property,

if g in (i) is Schur convex, so is h.
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Semigroup property: A function ϕ(λ, x) de-

fined on (0,∞) × [0,∞) is said to satisfy the

semigroup property in λ if ϕ(λ1 + λ2, x)

=
∫∞
0 ϕ(λ1, x − y)ϕ(λ2, y) dµ(y), where µ is ei-

ther the Lebesgue measure or the counting

measure on non-negative integers.

Theorem (Proschan and Sethuraman, 1977)

Let ϕ(λ, x) be TP2 with the semigroup prop-

erty, and let g(x) be Schur-convex [Schur-concave];

then h(λ) =
∫∞
0 · · · ∫∞0 g(x)

∏n
i=1 ϕ(λi, xi)dµ(xi)

is Schur-convex [Schur-concave] whenever the

integral exists.
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Symmetrization: a special (extreme) case of

(i) where g is a permutation distribution

Let Xi ∼ φ(x, θi) independent. Consider prob-

abilities of permutation-invariant events like

P (
∑

i ψ(Xi) > t), or the distribution of order

statistics or sums, may consider exchangeable

random variables

(ג) Y = (Y1, . . . Yn) ∼ 1
n!

∑
π

∏
i φ(yi, θπ(i)).

(Marshall-Olkin, Spizzichino, Pemantle)

[A general symmetrization: 1
n!

∑
π φ(yπ(1), . . . , yπ(n))]

(ג) ⇒ Y has dependent - negatively correlated

- components.

NO Negative Association (NA), so NA is not

closed under symmetrization (a question of Pe-

mantle, 1999). Moreover, no Negative Quad-

rant Dependence even for n = 2. Independent

r.v. satisfy all notions of Negative dependence.
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Symmetrization has negative correlations, but

not even NQD. Like (ℵ).

similar to the case of (ℵ) we can prove that

(ג) ⇒ (FX(1)
(t), . . . , FX(n)

(t)) Â (F ∗
X(1)

(t), . . . , F ∗
X(n)

(t))



More generally:

Let (k) h(x1, . . . , xn)

=
∫ ∫

f(x1; θ1, η1) · · · f(xn; θn, ηn)g(θ;η)dθdη

where g(πθ;π′η) = g(θ;η) for all permutations

π, π′.
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More on Majorization and Schur functions

Theorem (Boland et al 1994): Let X1, . . . , Xn

be iid Exp(1), then g(λ) = P (
∑

i Xi/λi > t)

is Schur convex in λ > 0. Note λi are hazard

rates. P (
∑

i Xi/λi > t) =
∫
I∑

i Xi>t
∏

e−λixidx,(i)

Life is not always simple:

Diaconis (1970’s): For iid Exp(1) variables,

P (a1X1 + a2X2 > t) is decreasing (increasing)

in the partial order a Â a′ for small (large) t.

Diaconis, Perlman + ...(1987)

P (a1X1 + . . . + anXn > t) is Schur concave for

iid Xi ∼ Γ and small t and Schur concave for

large t. Conjecture: for each t it is a Schur

function.
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A ”generalization” :

consider ψ(a) = P (a1X1 + . . . + anXn > Y )

where Y ∼ Exp, Xi independent.

ψ(a) =
∫

FY (
∑

i aixi)
∏

i f(xi)dx (∗)
=

∫
FY (

∑
i xi)

∏
i
1
ai

f(xi/ai)dx

this has the form (i).

FY concave and (*) ⇒ ψ(a) is symmetric and

concave and hence Schur concave.
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Answer to Riddle: All orders are equally good.

For all orders of gladiators P (Team A wins) is

the same.

Xi, Yj ∼ Exp(1) iid ⇒ P (aXi > bYj) = a
a+b

⇓
Exchangeability: For any order of sending glad-

iators to fight, P (Team A wins)

= P (
∑m

i=1 aiXi >
∑n

j=1 bjYj) = Gm,n(a,b)

= a1

a1+b1
Gm,n−1(a,br{b1}) + b1

a1+b1
Gm−1,n(ar{a1},b)

Colonel (B)lotto: What is the optimal choice

of a,b: subject to
∑

i ai = α,
∑

j bj = β, perhaps

α = β (equal means), perhaps equal medi-

ans, perhaps constraints on
∑

i 1/ai and
∑

j 1/bj

(sums of hazard rates).

16



Majorization : let a(1) ≤ · · · ≤ a(n) be the

ordered a1, . . . , an. We say a Â a′ if ∀ k,∑n
i=k a(i) ≥

∑n
i=k a′(i) and

∑n
i=1 a(i) =

∑n
i=1 a′(i).

The vector (ā, . . . , ā) is minimal in the order Â.

If a Â a′ ⇒ ψ(a) ≤ ψ(a′) we say that ψ is Schur

concave. ⇒ ψ is symmetric (permutation invariant)

A symmetric concave or log-concave function

is Schur concave.

Diaconis +: P (
∑

i aiXi > b) is decreasing in the

partial order Â =Schur concave for b small,

and increasing=Schur convex for b large.
?⇒ P (

∑m
i=1 aiXi > bY1) same behavior?
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NO! P (
∑m

i=1 aiXi > tY1) = 1−∏
i

t
t+ai

,

Schur concave. For given α =
∑

i ai the prob-
ability is max when a1 = . . . = am, so against
one player (n = 1), weak or strong, the best is
always equal power.

What happens when there is more than one
player in team B, n ≥ 2?

Here the phenomenon of Diaconis does take
place: with

∑
i ai = α fixed and small bj’s,

P (Team A wins) = P (
∑

i aiXi >
∑

j bjYj) is
maximal when ai’s are equal, and for large bj’s
when there is one strong gladiator.

There seems to be ”phase transition”: for
each b = (b1, . . . , bn) one of the above two
choices of a is optimal (but above probability
is not always Schur)

No transitivity: ∃ a,b, c such that
P (A beats B), P (B beats C), and
P (C beats A) > 1/2, Kaminsky et al (1984).
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Now assume
∑

i ai =
∑

j bj (fair game ?)
Claim: Best reply to b1 = . . . = bm is
a1 = . . . = an (equal strengths)

⇓
Equal strengths is unique Nash (0-sum game,

hence also min-max and max-min. value =
1/2).

Conjecture 1: when
∑

i ai =
∑

j bj
P (

∑
i aiXi >

∑
j bjYj) > 1/2 ⇔ b Â

6=
a.

⇓
Above claim.

Conjecture 2: ψ(a,b) = P (
∑

i aiXi >
∑

j bjYj)
is Schur convex in b and Schur concave in a
when

∑
i ai =

∑
j bj (not true without such a

condition)
⇓

Conjecture 1 (take a = b...)

When
∑

i 1/ai =
∑

j 1/bj we have 1/a Â 1/a′ ⇒∑
i ai ≥

∑
i a′i and indeed

P (Team A wins) is increasing in Â, Boland et
al (1994).
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Remark (Rotar, Galambos?) Order statistics,

or sums of random variables keep their distri-

bution after symmetrization, and it should be

possible to study them for exchangeable r.v.’s.

There are CLT’s or normal approximations for

sums of variables which form a Markov chain,

Martingale, Mixing conditions, all depending

on order and no exchangeability. But the sum

does not depend on the order!

Symmetrization leave the distribution of the

sum unchanged. Why are conditions which in-

volve order so relevant? The fact that after

symmetrization there are negative correlations

implies that this exchangeable distribution is

not embeddable in an infinite exchangeable se-

quence for which CLT is known (Blum et al).

The fact of no NA prevents using Newman’s

CLT’s for NA variables.
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