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Symmetry and Its Discontents

The following paper consists of two parts. In the first it is argued that Bruno
de Finetti’s theory of subjective probability provides a partial resolution
of Hume’s problem of induction, if that problem is cast in a certain way.
De Finetti’s solution depends in a crucial way, however, on a symmetry
assumption – exchangeability – and in the second half of the paper the broader
question of the use of symmetry arguments in probability is analyzed. The
problems and difficulties that can arise are explicated through historical ex-
amples which illustrate how symmetry arguments have played an important
role in probability theory throughout its development. In a concluding section
the proper role of such arguments is discussed.

1. the de finetti representation theorem

Let X1, X2, X3, . . . be an infinite sequence of 0,1-valued random variables,
which may be thought of as recording when an event occurs in a sequence of
repeated trials (e.g., tossing a coin, with 1 if heads, 0 if tails). The sequence
is said to be exchangeable if all finite sequences of the same length with the
same number of ones have the same probability, i.e., if for all positive integers
n and permutations σ of {1, 2, 3, . . . , n},

P[X1 = e1, X2 = e2, . . . , Xn = en]

= P[X1 = eσ (1), X2 = eσ (2), . . . , Xn = eσ (n)],

where ei denotes either a 0 or a 1. For example, when n = 3, this means that

P[1, 0, 0] = P[0, 1, 0] = P[0, 0, 1] and

P[1, 1, 0] = P[1, 0, 1] = P[0, 1, 1].

(Note, however, that P[1, 0, 0] is not assumed to equal P[1, 1, 0]; in general,
these probabilities may be quite different.)

Reprinted with permission from Brian Skyrms and William L. Harper (eds.), Causation,
Chance, and Credence 1 (1988): 155–190, c© 1988 by Kluwer Academic Publishers.
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In 1931 the Italian probabilist Bruno de Finetti proved his famous de
Finetti Representation Theorem. Let X1, X2, X3, . . . be an infinite ex-
changeable sequence of 0,1-valued random variables, and let Sn = X1 +
X2 + · · · + Xn denote the number of ones in a sequence of length n. Then it
follows that:

1. the limiting frequency Z =: limn→∞(Sn/n) exists with probability 1.
2. if µ(A) =: P[Z ∈ A] is the probability distribution of Z, then

P[Sn = k] =
∫ 1

0

(n

k

)
pk(1 − p)n−kdµ(p)

for all n and k.1

This remarkable result has several important implications. First, contrary to
popular belief, subjectivists clearly believe in the existence of infinite limiting
relative frequencies – at least to the extent that they are willing to talk about
an (admittedly hypothetical) infinite sequence of trials.2 The existence of
such limiting frequencies follows as a purely mathematical consequence of
the assumption of exchangeability.3 When an extreme subjectivist such as
de Finetti denies the existence of objective chance or physical probability,
what is really being disputed is whether limiting frequencies are objective or
physical properties.

There are several grounds for such a position, but all center around the
question of what “object” an objective probability is a property of. Surely not
the infinite sequence, for that is merely a convenient fiction (Jeffrey 1977).
Currently the most fashionable stance seems to be that objective probabili-
ties are a dispositional property or propensity which manifests itself in, and
may be measured with ever-increasing accuracy by, finite sequences of ever-
increasing length (e.g., Kyburg 1974).

But again, a property of what? Not the coin, inasmuch as some people
can toss a so-called fair coin so that it lands heads 60% of the time or even
more (provided the coin lands on a soft surface such as sand rather than a hard
surface where it can bounce). Some philosophers attempt to evade this type of
difficulty by ascribing propensities to a chance set-up (e.g., Hacking 1965):
in the case of coin-tossing, the coin and the manner in which it is tossed.
But if the coin were indeed tossed in an identical manner on every trial, it
would always come up heads or always come up tails; it is precisely because
the manner in which the coin is tossed on each trial is not identical that the
coin can come up both ways. The suggested chance set-up is in fact nothing
other than a sequence of objectively differing trials which we are subjectively
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unable to distinguish between. At best, the infinite limiting frequency is a
property of an “object” enjoying both objective and subjective features.

2. de finetti vanquishes hume

The most important philosophical consequence of the de Finetti representation
theorem is that it leads to a solution to Hume’s problem of induction: why
should one expect the future to resemble the past? In the coin-tossing situation,
this reduces to: in a long sequence of tosses, if a coin comes up heads with
a certain frequency, why are we justified in believing that in future tosses of
the same coin, it will again come up heads (approximately) the same fraction
of the time?

De Finetti’s answer to this question is remarkably simple. Given the infor-
mation that in n tosses a coin came up heads k times, such data is incorporated
into one’s probability function via

Bayes’s rule of conditioning: P[A |B] = P[A and B]/P[B].

If n is large and p∗ = k/n, then – except for certain highly opinionated,
eccentric, or downright kinky “priors” dµ – it is easy to prove that the resulting
posterior probability distribution on p will be highly peaked about p∗; that
is, the resulting probability distribution for the sequence of coin tosses looks
approximately like (in a sense that can be made mathematically precise)
a sequence of independent and identically distributed Bernoulli trials with
parameter p∗ (i.e., independent tosses of a p∗ coin). By the weak law of large
numbers it follows that, with high probability, subsequent tosses of the coin
will result in a relative frequency of heads very close to p∗.

Let us critically examine this argument. Mathematically it is, of course,
unassailable. It implicitly contains, however, several key suppositions:

1. P is operationally defined in terms of betting odds.
2. P satisfies the axioms of mathematical probability.
3. P is modified upon the receipt of new information by Bayesian condi-

tioning.
4. P is assumed to be exchangeable.

In de Finetti’s system, degree of belief is quantified by the betting odds one
assigns to an event. By a Dutch book or coherence argument, one deduces
that these betting odds should be consistent with the axioms of mathematical
probability. Conditional probabilities are initially defined in terms of condi-
tional bets and Bayes’s rule of conditioning is deduced as a consequence of
coherence. The relevance of conditional probabilities to inductive inference
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is the dynamic assumption of Bayesianism (Hacking 1967): if one learns that
B has occurred, then one’s new probability assignment is P[A |B]. In general,
however, conditional probabilities can behave in very nonHumeian ways, and
(infinite) exchangeability is taken as describing the special class of situations
in which Humeian induction is appropriate.

This paper will largely concern itself with the validity of this last assump-
tion. Suffice it to say that, like Ramsey (1926), one may view the subjec-
tivist interpretation as simply capturing one of the many possible meanings
or useages of probability; that the Dutch book and other derivations of the
axioms may be regarded as plausibility arguments (rather than normatively
compelling); and that although a substantial literature has emerged in recent
decades concerning the limitations of Bayesian conditioning, the difficulties
discussed and limitations raised in that literature do not seem particularly ap-
plicable to most of the situations typically envisaged in discussions of Hume’s
problem.

The assumption of exchangeability, however, seems more immediately
vulnerable. Isn’t it essentially circular, in effect assuming what one wishes
to prove? Of course, in one sense this must obviously be the case. All math-
ematics is essentially tautologous, and any implication is contained in its
premises. Nevertheless, mathematics has its uses. Formal logic and subjective
probability are both theories of consistency, enabling us to translate certain
assumptions into others more readily palatable.

What de Finetti’s argument really comes down to is this: if future outcomes
are viewed as exchangeable, i.e., no one pattern is viewed as any more or less
likely than any other (with the same number of successes), then when an event
occurs with a certain frequency in an initial segment of the future, we must, if
we are to be consistent, think it likely that that event will occur with approx-
imately the same frequency in later trials. Conversely, if we do not accept
this, it means that we must have – prospectively – thought certain patterns
more likely than others. Which means that we must have possessed more
information than is ordinarily posited in discussions of Humeian induction.

And there the matter would appear to stand. Or does it?

3. the insidious assumption of symmetry

Exchangeability is one of many instances of the use of symmetry arguments
to be found throughout the historical development of mathematical proba-
bility and inductive logic. But while such arguments often have a seductive
attraction, they also often carry with them “hidden baggage”: implications
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or consequences, sometimes far from obvious, which later cast serious doubt
on their validity. We will discuss three historically important examples, all
involving attempts to justify induction by the use of probability theory, and
all (in effect) involving the appropriate choice of prior dµ in the de Finetti
representation.

Example 3.1. Bayes’s argument for the Bayes–Laplace prior.

Consider “an event concerning the probability of which we absolutely know
nothing antecedently to any trials made concerning it” (Bayes 1764). Implic-
itly invoking a symmetry argument, Bayes argued that “concerning such an
event I have no reason to think that, in a certain number of trials, it should
rather happen any one possible number of times than another,” i.e., that in a
sequence of n trials one’s probability assignment for Sn , the number of heads,
should satisfy

Bayes’s Postulate: P[Sn = k] = 1/(n + 1).

That is, the number of heads can assume any of the n + 1 values
0, 1, 2, . . . , n and, absent further information, all n + 1 values are viewed
as equally likely. In a famous Scholium, Bayes concluded that if this were
indeed the case, then the prior probability dµ(p) must be the “flat” prior dp.4

Although Bayes’s exact reasoning at this point is somewhat unclear, it can
easily be made rigorous: Taking k = n in the de Finetti representation and
using Bayes’s postulate, it follows that

∫ 1

0
pndµ(p) = 1/(n + 1).

The integral on the left-hand side is the n-th moment of dµ, so Bayes’s assump-
tion uniquely determines the moments of dµ. But since dµ is concentrated on
a compact set, it follows by a theorem of Hausdorff that dµ, if it exists, is in
turn determined by its moments. That is, there can be at most one probability
measure dµ which satisfies Bayes’s assumption P[Sn = k] = 1/(n + 1). But
the flat measure dp does satisfy this integral equation, i.e.,

∫ 1

0
pndp = 1/(n + 1),

hence dµ must be dp.
Bayes’s argument is quite attractive. A modern-day subjectivist might view

Bayes’s assumption as a definition (possibly one of many) of “complete
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ignorance” (rather than consider “complete ignorance” to be an a priori
meaningful concept), but would probably find Bayes’s argument otherwise
unobjectionable.

The argument in its original form, however, did not go uncriticized. As
Boole (1854, pp. 369–375) noted, rather than consider the events [Sn = k] to
be equally likely, one could equally plausibly take all sequences of a fixed
length (or “constitutions”) to be so. Thus, for n = 3

P[000] = P[100] = P[010] = P[001] = P[110]

= P[101] = P[011] = P[111] = 1/8.

To many, this assignment seemed a far more natural way of quantifying ig-
norance than Bayes’s.

Unfortunately, it contains a time-bomb with a very short fuse. As Carnap
(1950, p. 565) later noted (and Boole himself had already remarked), this
probability assignment corresponds to independent trials, and thus remains
unchanged when conditioned on the past, an obviously unsatisfactory choice
for modeling inductive inference, inasmuch as “past experience does not in
this case affect future expectation” (Boole 1854, p. 372).

In his Logical Foundations of Probability (1950), Carnap announced that
in a later volume, “a quantitative system of inductive logic” would be con-
structed, based upon a function Carnap denoted c∗. Carnap’s c∗ function was,
in effect, the one already proposed by Bayes. But Carnap grew uneasy with this
unique choice, and in his monograph The Continuum of Inductive Methods
(1952), he advocated instead the use of a one-parameter family containing c∗.
Unknown to Carnap, however, he had been anticipated in this, almost a quarter
of a century earlier, by the English philosopher William Ernest Johnson.

Example 3.2. W. E. Johnson’s sufficientness postulate.

In 1924 Johnson, a Cambridge logician, proposed a multinomial generaliza-
tion of Bayes’s postulate. Suppose there are t ≥ 2 categories or types, and
in n trials there are n1 outcomes of the first type, n2 outcomes of the second
type, . . . , and nt outcomes of the t-th type, so that n = n1 + n2 + · · · + nt .
The sequence (n1, n2, . . . , nt ) is termed an ordered t-partition of n. Bayes
had considered the case t = 2, and his postulate is equivalent to assuming that
all ordered 2-partitions (k, n – k) are equally likely. Now Johnson proposed
as its generalization

Johnson’s combination postulate: Every ordered t-partition of n is equally
likely.
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For example, if t = 3 and n = 4, then there are 15 possible ordered 3-partitions
of 4, viz.:

n1 n2 n3

4 0 0
3 1 0
3 0 1
2 2 0
2 1 1
2 0 2
1 3 0
1 2 1
1 1 2
1 0 3
0 4 0
0 3 1
0 2 2
0 1 3
0 0 4

and each of these is assumed to be equally likely.
Johnson did not work with integral representations but, like Carnap, with

finite sequences. In so doing he introduced a second postulate, his “permuta-
tion postulate.” This was none other than the assumption of exchangeability,
thus anticipating de Finetti (1931) by almost a decade! (If one labels the types
or categories with the letters of a t-letter alphabet, exchangeability here means
that all words of the same length, containing the same number of letters of
each type, are equally likely). Together, the combination and permutation pos-
tulates uniquely determine the probability of any specific finite sequence. For
example, if one considers the fifth partition in the table above, 4 = 2 + 1 + 1,
then there are twelve sequences which give rise to such a partition, viz.

x1 x2 x3 x4

1 1 2 3
1 1 3 2
1 2 1 3
1 2 3 1
1 3 1 2
1 3 2 1
2 1 1 3
2 1 3 1
2 3 1 1
3 1 1 2
3 1 2 1
3 2 1 1
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and each of these are thus assumed to have probability (1/15)(1/12) = 1/180.
The resulting probability assignment on finite sequences is identical with
Carnap’s c∗.

Despite its mathematical elegance, Johnson’s “combination postulate” is
obviously arbitrary, and Johnson was later led to substitute for it another, more
plausible one, his “sufficientness postulate.” This new postulate assumes for
all n

Johnson’s sufficientness postulate:

P[Xn+1 = j |X1 = i1, X2 = i2, . . . , Xn = in] = f (n j , n).

That is, the conditional probability that the next outcome is of type j depends
only on the number of previous trials and the number of previous outcomes
of type j, but not on the frequencies of the other types or the specific trials on
which they occurred. If, for example t = 3, n = 10, and n1 = 4, the postulate
asserts that on trial 11 the (conditional) probability of obtaining a 1 is the same
for all sequences containing four 1’s and 6 not –1’s, and that this conditional
probability does not depend on whether there were six 2’s and no 3’s, or five
2’s and one 3, and so on. (Note that the postulate implicitly assumes that all
finite sequences have positive probability, so that the conditional probabilities
are well-defined.)

Johnson’s sufficientness postulate makes what seems a minimal assump-
tion: absence of knowledge about different types is interpreted to mean that
information about the frequency of one type conveys no information about the
likelihood of other types occurring. It is therefore rather surprising that it fol-
lows from the postulate that the probability function P is uniquely determined
up to a constant:

Theorem (Johnson 1932). If P satisfies the sufficientness postulate and t ≥ 3,
then either the outcomes are independent or there exists a k > 0 such that

f (ni , n) = {ni + k}/{n + tk}.
This is, of course, nothing other than Carnap’s “continuum of inductive
methods.”5

The de Finetti representation theorem can be generalized to a much wider
class of infinite sequences of random variables than those taking on just
two values (e.g., Hewitt and Savage 1955). In the multinomial case now
being discussed, the de Finetti representation states that every exchangeable
probability can be written as a mixture of multinomial probabilities. Just as
Bayes’s postulate implied that the prior dµ in the de Finetti representation
was the flat prior, Johnson’s theorem implies that the mixing measure dµ in
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the de Finetti representation is the symmetric Dirichlet prior

�(tk)/�(k)t pk−1
1 pk−1

2 . . . pk−1
1 dp1dp2 . . . dpt−1:

a truly remarkable result, providing a subjectivistic justification for the use of
the mathematically attractive Dirichlet prior.6

Despite its surface plausibility, Johnson’s sufficientness postulate is often
too strong an assumption. While engaged in cryptanalytic work for the British
government at Bletchley Park during World War II, the English logician Alan
Turing realized that even if one lacks specific knowledge about individual
category types, the frequencies n1, n2, . . . , nt may contain relevant informa-
tion about predictive probabilities, namely the information contained in the
frequencies of the frequencies.

Let ar = the number of frequencies ni equal to r; ar is called the frequency
of the frequency r. For example, if t = 4, n = 10, and one observes the se-
quence 4241121442, then n1 = 3, n2 = 3, n3 = 0, n4 = 4 and a0 = 1, a1 =
0, a2 = 0, a3 = 2, a4 = 1. (A convenient shorthand for this is 0110203241.)
Although it is far from obvious, the ar may be used to estimate cell
probabilities: see Good (1965, p. 68).7

Example 3.3. Exchangeability and partial exchangeability.

Given the failure of such attempts, de Finetti’s program must be seen as a
further retreat from the program of attempting to provide a unique, quantitative
account of induction. Just as Johnson’s sufficientness postulate broadened
the class of inductive probabilities from that generated by the Bayes–Laplace
prior to the continuum generated by the symmetric Dirichlet priors, so de
Finetti extended the class of possible inductive probabilities even further to
include any exchangeable probability assignment.

But what of the symmetry assumption of exchangeability? Even this is not
immune to criticism (as de Finetti himself recognized). Consider the following
sequence: 000101001010100010101001. . . . Scrutiny of the sequence reveals
the interesting feature that although every 0 is followed by a 0 or 1, every
1 is invariably followed by a 0. If this feature were observed to persist over
a long segment of the sequence (or simply that 1’s were followed by 0’s
with high frequency), then this would seem relevant information that should
be taken into account when calculating conditional, predictive probabilities.
Unfortunately, exchangeable probabilities are useless for such purposes: if P
is exchangeable, then the conditional probabilities

P[Xn+1 = j |X1 = i1, X2 = i2, . . . , Xn = in]
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