PROBABILITY AND INFERENCE CONCEPTS

A basic familiarity with the calculus of mathematical probability is assumed for this develop-
ment of statistical modelling and inference. From a purely mathematical perspective, the probabil-
ity calculus can be studied and developed with scant regard to the notion of just what probability
means. A comprehensive development of probabilistic modelling for all problems of measuring
and manipulating uncertainties requires, however, an appreciation of the existing definitions and
interpretations of probability, and of their appropriateness and limitations in given contexts.

What is probability? Common answers include allusions to chances or likelihoods of events
occurring, or, even vaguer, to propensities of occurrence. At one level, this is simply word substitu-
tion, but at another it is a reflection of a personal appreciation based on experience with uncertain
events, and the vagueness or imprecision is an inherent feature of uncertainty assessment. One
event may be judged more likely or more probable than another, having a greater chance of oc-
curring or propensity to occur, but quantifying the difference and assigning numerical measures
to the uncertainties, is somewhat unnatural. And so formal interpretation and, most important,
operational definitions are required.

A probability is a numerical measurement of uncertainty. An event that may occur, or may
have occurred, is uncertain to a degree dependent on the known circumstances of the event and on
the individual concerned with making assessments of the uncertainty. The familiar interpretations
and definitions of probability are those based on counting and relative frequency concepts. In
these, the circumstances are clearly defined and articulated, as are the bases on which individuals
are supposed to judge the events.

To begin with counting concepts, we have statistical sampling as the archetype paradigm
for the development of probabilities. From a collection of n individuals, one is selected; if the
individuals are judged equally likely to be selected, the probability, or chance, or any specific
individual is 1/n. There is a still a degree of vagueness here; what does “equally likely” mean? The
connotations are of fairness and randomness - the flips of fair coins, rolls of unbiased die, random
numbers provided by statisticians, and so forth. Ultimately, however, the implied assumption
must be deemed acceptable to the concerned individual before the 1/n probabilities, and resulting
implications and consequences, follow.

The frequency concept of probability, critical in statistical theories, is similarly vaguely defined,
though with strong appeal to what, in principle, are empirically verifiable circumstances. An event
is embedded in a (conceptually) infinite sequence of similar events, and the relative frequency of
past occurrence in the sequence is taken as defining a probability for the current case. If it has
rained on about 32% of past days that are accepted as suitably similar to today in terms of climatic
conditions, then a chance of around 0.32 is deemed appropriate, by the frequency definition, for
the probability of rain today. If an industrial production process has produced less than 0.1%
defective items in past operation then, under similar operating conditions the chance of future
defectives should be around 0.1%. Key weaknesses of this definition relate to the difficulties, if
not impossibilities, in determining appropriate embedding sequences in many problems, and the
associated vagueness of classification of “similarity” of the circumstances of the current occasion
to those past. But the definition is widely assumed in developing probability models. Certain
applications involve natural embedding sequences of similar events and thus provide empirical
foundation for extrapolating relative frequencies (the chance of the sun rising tomorrow). Still, the
definition has strong subjective elements, requiring observers to make or accept the vague notion
of appropriate similarity.

Counting and frequency concepts are fundamental features of basic probability theory. A wider
definition is required, however, in order to extend the domain of probability to problems with no
logical counting or frequency structure. To attach numerical measures of uncertainty to unique



events, for instance, requires notions of chance not covered by these two concepts. Definitions of
subjective probability attempt to cover such cases, and all other problems of quantifying uncertainty.
The basic notion here is that probability is a numerical measure of belief of an individual, the
observer, in the occurrence or non-occurrence of events. An individual who strongly believes it
will rain today will have a high probability for that event. Identifying, or measuring such beliefs
in numerical terms requires and operational definition, and there are several related approaches,
the most easily understood and acceptable related to assessment of uncertainties by comparison
with events of known and agreed chances. Thus an individual judging an event to be more likely
than a 6 on the roll of a single die, but less likely than an even outcome on the roll, should be
comfortable with a probability lying between 1/6 and 1/2 for that event. Further reflection and
comparison with more refined, “standard” events might narrow down the assessment to a small
enough range to adopt a particular value. Obviously, such definitions are operational only up to a
margin; extremely precise assessments are impossible, but then, very high precision is not necessary
in many problems.

There are other assessment methods, particularly some involving gambling issues (we might
talk about this sometime later on). For now, two key points are evident. Firstly, probability as de-
gree of belief is clearly subjective, individual and information dependent. Secondly, the “objective”
counting and frequency concepts are subsumed; in assessing beliefs about an event with counting
or frequency context, an individual should take such contexts into account in forming his or her
probability judgements. Hence the statement by Bruno de Finetti that Probability does not exist
(generally) in any absolute or “objective” sense.

CONDITIONAL PROBABILITY

All probabilities are conditional. The probability you assign to an event depends (i.e., is
conditional upon) the information and knowledge you bring to bear in assessing the probability.
This is most clearly evident in connection with statistical inference where we have a fundamental
focus on how probabilities change as new data or information is analysed. The simple diagnosis
example (over the page) makes this clear. Let’s take a few details from that example:

An individual (“you”) presents for testing for the presence or absence of a rare disease.
You are assumed to be drawn from the general population and it is know that the disease
prevalence rate is 1% — that is, 1% of people carry the disease. On the basis of only this
information, my probability that you are diseased is 0.01. That is a probability conditional
on information H — where H stands for my background knowledge and the assumption
that you are a representative/random draw from the population. Now you get a screening
test; the test turns out negative, contra-indicating disease. Based on the known accuracies
of the screening test — which is not perfect — this data revises the probability of 0.01 to
0.0001. — see the diagnosis example below and class discussion for the How? and Why?
behind the revised number. Call the data D, so that D = {“T'est Negative"} is added to
H to get the revised probability: i.e.,

Pr(Disease|H) = 0.01 but Pr(Disease|H, D) = 0.0001.

So here we see clearly that there is no such thing as THE probability of you being diseased
— it depends on conditioning information and data, as it does on who does the analysis.

The concepts and mechanisms for revising probabilistic representations of information and
knowledge — illustrated in this simple (the simplest?) example — form the corner-stone of scientific
inference in the face of uncertainty.



INTRODUCTORY INFERENCE CONCEPTS: A simple diagnosis example
(This is closely related to the genetics example in GCSR Section 1.4)

Individuals tested for presence of a rare disease are assumed to be drawn from a population
with about 1% diseased. Absent other information, a tested individual then has initial, or prior,
chance 0.01 of being diseased. The screening test is 99% sensitive, correctly diagnosing a diseased
individual with probability 0.99; it is only 90% specific, however, correctly diagnosing a non-diseased
individual with chance 0.9. These test characteristics may be based on trials with patients of known
condition. Introduce binary indicators = 1(0) to denote presence (absence) of the disease for the
individual, and z = 1(0) to denote a positive (negative) test result indicative of disease. The
information defines probabilities p(#) and p(z|@) for all values of 6 and x, and hence the joint
distribution through chances p(z,0) = p(z|0)p(#). We can answer the following questions.

First, how many patients can we expect to test positive? Those testing positive are destined
for further tests and possibly treatment. Decisions about allocation of resources for patient care
will be based on projected numbers in this group, so health care administrators need to ask such
questions. We can deduce the marginal probability p(z = 1) = 0.1089, or about 11%. Most of these
will healthy since by far the majority of all tested individuals are healthy. Secondly, if a patient tests
positive, what are the chances he or she is diseased? By Bayes’ theorem, p(6 = 1|z = 1) = 0.091.
The odds on disease given a positive test are o(f = 1|z = 1) = 0.1, which can be obtained
from o(6 = 1|z = 1) = o(@ = 1)r where r = p(z = 1|8 = 1)/p(x = 1|@ = 0). So the final or
posterior odds o(@ = 1|z) are obtained from the prior odds o(@ = 1) through multiplication by
r = p(z|@ = 1)/p(x|6 = 0); r depends only on the test characteristics, and is called the likelihood
ratio for 6 = 1 versus 6 = 0 based on outcome z. For any known outcome x = 1(0), p(z|f) may be
viewed as a function of the unknown € = 1(0); it is called the likelihood function for € given the
observed value of z. One way to assess the impact that data x has on uncertainty about € is to
quote the likelihood ratio, equivalently the ratio of posterior to prior odds; based on z = 1, r = 9.9,
so that the posterior odds on 8 = 1 are 9.9 times the prior odds, whatever the prior odds may be.

The focus on updating of prior p(f) to posterior p(f|x) is a central inferential concept. Via
Bayes’ theorem

p(0]x) o p(0)p(x|0)

where the constant of proportionality can be identified to ensure that p(f|x) is a density function.
The problem of inference is one of updating probabilistic descriptions of uncertainties by condi-
tioning on further information. The prior p(#) is of course a conditional distribution, conditional
on all previous data and information used in its assessment, and all other assumptions. This is not
made explicit in notation though formally we might write p(f|H) where H denotes all such prior
information. This information is also relevant to the test description, so that the chances of test
outcomes might formally be written p(z|@, H). Then Bayes’ theorem is, more formally,

p(Olx, H) o< p(0|H)p(x|0, H).

Typically, H will be suppressed in notation, though it is important to identify in conditioning
statements all quantities that are assumed to define the corresponding distributions if they may be
subject to change in the course of analysis or if they are themselves to be viewed as uncertain at
some point.



