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ABSTRACT

In the absence of dividends, the surplus of a company is modeled by a Wiener process (or Brownian
motion) with positive drift. Now dividends are paid according to a barrier strategy: Whenever the
(modified) surplus attains the level b, the “overflow” is paid as dividends to shareholders. An
explicit expression for the moment-generating function of the time of ruin is given. Let D denote
the sum of the discounted dividends until ruin. Explicit expressions for the expectation and the
moment-generating function of D are given; furthermore, the limiting distribution of D is deter-
mined when the variance parameter of the surplus process tends toward infinity. It is shown that
the sum of the (undiscounted) dividends until ruin is a compound geometric random variable with
exponentially distributed summands.

The optimal level b* is the value of b for which the expectation of D is maximal. It is shown that
b* is an increasing function of the variance parameter; as the variance parameter tends toward
infinity, b* tends toward the ratio of the drift parameter and the valuation force of interest, which
can be interpreted as the present value of a perpetuity. The leverage ratio is the expectation of D
divided by the initial surplus invested; it is observed that this leverage ratio is a decreasing function
of the initial surplus. For b � b*, the expectation of D, considered as a function of the initial
surplus, has the properties of a risk-averse utility function, as long as the initial surplus is less than
b*. The expected utility of D is calculated for quadratic and exponential utility functions. In the
appendix, the original discrete model of De Finetti (1957) is explained and a probabilistic identity
is derived.

1. INTRODUCTION

Recently, there has been much discussion in the United States about eliminating or reducing taxes on
dividends so as to encourage corporations to pay more dividends. It may be a surprise to many that
studies of optimal dividend payment strategies have appeared in the actuarial literature for half a
century. A main purpose of this paper is to provide economic analyses of such strategies.

Traditionally, actuaries have been primarily concerned with the financial management of insurance
companies and other financial systems, in particular with their solvency. In the classical model for
determining the probability of ruin, the surplus of a company can increase without bounds. This is
unrealistic. De Finetti (1957) suggested that other, more economic considerations such as dividend
payments should also play an important role. Specifically, he considered a discrete-time model, in
which the periodic gains of a company are �1 (with probability � � 1

2) or �1 (with probability 1 � �).
If the ultimate goal is to maximize the expectation of the discounted dividends paid to the share-

holders of the company, what is the optimal dividend-payment strategy? De Finetti found that the
optimal strategy must be a barrier strategy, and he showed how the optimal level of the barrier can be
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determined. De Finetti’s idea inspired the pioneering work of Miyasawa (1962), Takeuchi (1962), and
Morill (1966).

The problem of finding the optimal dividend-payment strategy has been discussed extensively by Karl
Borch; see Borch (1974, 1990). The reader may also want to consult the monographs by Bühlmann
(1970, sec. 6.4), Gerber (1979, sec. 10.1 and 10.2) and Seal (1969, pp. 163–6), and their references.
Some recent papers on dividend-payment strategies are Asmussen and Taksar (1997), Paulsen and
Gjessing (1997), Gerber and Shiu (1998, 2003a,b), Højgaard and Taksar (1999), Jeanblanc-Picqué and
Shiryaev (1995), Siegl and Tichy (1999), Albrecher and Kainhofer (2002), Bühlmann (2002), Højgaard
(2002), Claramunt, Mármol, and Alegre (2003), Irbäck (2003), and Lin, Willmot, and Drekic (2003). The
reader should be cautioned that, in more general models, the optimal strategy can be a band strategy
and not a barrier strategy.

In this paper, we go back to the roots and consider the continuous counterpart of De Finetti’s (1957)
model. Here it is assumed that the surplus of a company is a Wiener process (Brownian motion) with
a positive drift. This model has the advantage that some very explicit calculations can be made.
Furthermore, economic analyses of the results can be carried out more easily and in considerable depth.
Basic mathematical results can be found in Gerber (1972), where the surplus process is the sum of a
Wiener process and an independent compound Poisson process; but the paper provides no economic
analyses.

Many results in this paper have their counterpart in the classical surplus model, where the aggregate
claims are modeled as a compound Poisson process, in particular, when the individual claims are
exponentially distributed. Since a Wiener process model can be obtained as a limit, such results in the
classical model can be used to give an alternative, rigorous derivation for the corresponding results in
the Wiener process model. As many actuaries are more familiar with the compound Poisson model, we
shall point out such correspondences.

2. THE WIENER PROCESS MODEL AND BASIC RESULTS

Consider a company with initial surplus or equity x � 0. If no dividends were paid, the surplus at time
t would be

X�t� � x � �t � �W�t�, t � 0, (2.1)

with � � 0, � � 0, and {W(t)} being a standard Wiener process. This model can be found in Iglehart
(1969), Grandell (1991), and Klugman, Panjer, and Willmot (1998). The company will pay dividends to
its shareholders according to a barrier strategy with parameter b � 0. Whenever the (modified) surplus
reaches the level b, the “overflow” will be paid as dividends. A formal definition can be given in terms
of the running maximum

M�t� � max
0�	�t

X�	�. (2.2)

Then the aggregate dividends paid by time t are

D�t� � �M�t� � b�� � �0 if M�t� � b
M�t� � b if M�t� � b (2.3)

(see Figure 1). It is assumed that the payment of dividends has no influence on the business; thus, the
modified surplus at time t is X(t) � D(t).

Let 
 � 0 be the force of interest for valuation, and let D denote the present value of all dividends until
ruin,

D � �
0

T

e�
t dD�t�, (2.4)
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where

T � min�t � 0 � X�t� � D�t� � 0� (2.5)

is the time of ruin. We use the symbol V(x; b), 0 � x � b, for the expectation of D,

V� x; b� � ED�. (2.6)

As a function of the initial surplus x, V(x; b) satisfies the homogeneous second-order differential
equation

�2

2
V�� x; b� � �V�� x; b� � 
V� x; b� � 0, 0 � x � b. (2.7)

This can be seen from the following heuristic argument. Let 0 � x � b. In the infinitesimal time interval
from 0 to dt, the surplus, with X(0) � x, does not reach either barrier (0 or b). Hence,

EV�X�dt�; b�� � e
dt V�x; b�. (2.8)

The right-hand side of (2.8) is

�1 � 
dt�V� x; b� � V� x; b� � 
V� x; b�dt.

Since

X�dt� � x � �dt � �W�dt�,

the left-hand side of (2.8) is

V� x; b� � �V�� x; b�dt �
�2

2
V�� x; b�dt.

Thus, subtracting V(x; b) from both sides of (2.8) and then canceling dt yields (2.7).

Figure 1
Illustration of Formulas (2.2) and (2.3)
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The function V(x; b) satisfies the boundary conditions

V�0; b� � 0, (2.9)

V��b; b� � 1. (2.10)

Condition (2.9) is obvious: If X(0) � x � 0, ruin is immediate, and no dividends are paid. Condition
(2.10) is a limiting case of formula (7.4) in Gerber and Shiu (1998). It can be explained as follows:
Consider two situations, one with initial surplus x � b, and the other with initial surplus x � b � ε
(ε � 0 and “small”). Then, in the first situation, the dividends will be by the amount ε higher than in
the second case, for almost all sample paths of {W(t)}. A rigorous proof of (2.10) can be found in Gerber
(1972).

Subject to the boundary conditions (2.9) and (2.10), the solution of the differential equation (2.7) is

V� x; b� �
g� x�

g��b�
, 0 � x � b, (2.11)

where

g� x� � erx � esx, (2.12)

with r and s being the roots of the quadratic equation

�2

2
�2 � �� � 
 � 0. (2.13)

We let r denote the positive root and s the negative root,

r �
�� � ��2 � 2
�2

�2 , (2.14)

s �
�� � ��2 � 2
�2

�2 , (2.15)

so that both the numerator and the denominator in (2.11) are positive. Formula (2.11) can be viewed
as a limiting case of Gerber and Shiu (1998, eq. 7.5).

We can rewrite (2.11) as

V� x; b� �
g� x�

g�b�

g�b�

g��b�
�

g� x�

g�b�
V�b; b�, 0 � x � b. (2.16)

Then we see that the ratio,

g� x�

g�b�
�

erx � esx

erb � esb , 0 � x � b, (2.17)

can be interpreted as the expected discounted value of a contingent payment of 1, payable as soon as the
surplus reaches level b, provided ruin has not yet occurred. Formula (2.17) is equivalent to (10.13.15) in
Panjer (1998) and can be viewed as a limiting case of formula (6.25) in Gerber and Shiu (1998).

Remarks

In the remainder of this section, we consider the limiting case 
 � 0. Then D � D(T), the total dividends
paid until ruin, and V(x; b) � E[D(T)]. From (2.14) and (2.15), we get r � 0 and s � �2�/�2. Hence,

g� x� � 1 � e�2� x/�2 (2.18)
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and

V� x; b� �
�2

2�
�e2�b/�2

� e2��b�x�/�2
�, 0 � x � b, (2.19)

by (2.11). In particular,

V�b; b� �
�2

2�
�e2�b/�2

� 1�, 0 � x � b. (2.20)

It follows from (2.19) and (2.20) that

V�b; b� � V�b � x; b � x� � V� x; b�, 0 � x � b. (2.21)

This formula can be interpreted as follows. For X(0) � b, the total dividends paid until ruin can be
decomposed as the sum of the total dividends paid until the modified surplus drops to the level x for the
first time and the total dividends paid thereafter until ruin. Taking expectations, we obtain (2.21). Some
actuaries may want to view (2.21) as the compound-interest formula

s� b�� � s� b�x� � s� x���1 � i�b�x,

where all interest functions are evaluated at the force of interest of 2�/�2.
In the limit � 3 0 (in addition to 
 � 0), formula (2.19) becomes

V� x; b� � ED�T�� � x, (2.22)

which is independent of b and �. Then (2.21) is b � (b � x) � x.
From (2.17) and (2.18), we see that

g� x�

g�b�
�

1 � e�2� x/�2

1 � e�2�b/�2 , 0 � x � b. (2.23)

This is the probability that the Wiener process {X(t)}, with X(0) � x, 0 � x � b, will reach level b before
level 0. Formula (2.23) is well known; for example, it can be found in Karlin and Taylor (1975, chap. 7,
theorem 5.2) and Harrison (1985, p. 43), and it is equivalent to (10.13.20) in Panjer (1998). The
discrete counterpart of (2.23) can be found in some textbooks in the context of the gambler’s ruin
problem. In the terminology of risk theory, the factor 2�/�2 is the adjustment coefficient and the
function e�2�x/�2

is the probability-of-ruin function �(x); see also Klugman, Panjer, and Willmot (1998,
corollary 6.10).

In the limiting case 
 � 0 and � � 0, (2.23) is

g� x�

g�b�
�

x

b
, 0 � x � b. (2.24)

3. THE DISTRIBUTION OF T UNDER A BARRIER STRATEGY

Consider that the barrier strategy with level b is applied. Thus, ruin is certain. We are interested in the
distribution of the time of ruin, T. In this section, we calculate

L� x; b� � Ee�
T�, (3.1)

where x � X(0) is the initial surplus or capital. This is the expected present value of a payment of 1 at
the time of ruin and, at the same time, the Laplace transform of the probability density function of T.
We shall also determine the expected time to ruin, E[T].

The functions L(x; b) and V(x; b) and the one defined by expression (2.17) are special cases of a
family of functions {K(x; b)}, where
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K� x; b� � Ee�
	K� X�	�; b��, 0 � x � b, (3.2)

with

	 � min�t � 0 � X�t� � 0 or X�t� � b� (3.3)

being the first time the surplus attains the level b or falls to 0. The argument we used to derive (2.7) also
shows that K(x; b) satisfies the homogeneous second-order differential equation

�2

2
K�� x; b� � �K�� x; b� � 
K� x; b� � 0, 0 � x � b. (3.4)

Hence, the function K(x; b) is a linear combination of the exponential functions erx and esx, with r and
s given by (2.14) and (2.15), respectively. The coefficients of this linear combination depend on the
boundary conditions. For L(x; b), the boundary conditions are

L�0; b� � 1, (3.5)

L��b; b� � 0. (3.6)

It follows that

L� x; b� �
re�s�b�x� � se�r�b�x�

re�sb � se�rb , 0 � x � b. (3.7)

Formula (3.7) can be found in Cox and Miller (1965, p. 233, ex. 5.6), which also indicates how the
probability density function of T can be obtained by inverting (3.7). Note that [1 � L(x; b)]/
 is the
expected present value of continuous payments at a rate of 1 from time 0 to T. In the limit 
 3 0, we
obtain

ET� �
�2

2�2 �e2�b/�2
� e2��b�x�/�2

�
2�x

�2 �, 0 � x � b, (3.8)

which matches equation (135) of Cox and Miller (1965, p. 235).

Remarks

(i) The compound Poisson counterpart of (3.7) has been given by Lin, Willmot, and Drekic (2003, eq.
5.4). See also their formula (6.3).

(ii) There is an unexpected relation between V�(0; b) and L(b; b). From (2.11) and (2.12), we see that

V��0; b� �
r � s

rerb � sesb . (3.9)

From (3.7) we gather that

L�b; b� �
r � s

re�sb � se�rb � e�r�s�b
r � s

rerb � sesb � e�r�s�bV��0; b�. (3.10)

Noting that
r � s � �2�/�2, (3.11)

we obtain from (3.10) the surprising identity
L�b; b� � e�2�b/�2 V��0; b�. (3.12)

Now,

L�b; b� � �
0

�

e�
tPrt � T � t � dt � X�0� � b�, (3.13)
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V��0; b� �
d

dx �
0

�

e�
tEI�T � t�D�t � dt� � D�t�� � X�0� � x��
x�0

. (3.14)

Here I(A) denotes the indicator random variable of an event A. Because (3.12) is valid for all

 � 0, it follows that

e2�b/�2 Prt � T � t � dt � X�0� � b� �
d

dx
EI�T � t�D�t � dt� � D�t�� � X�0� � x��

x�0

. (3.15)

In the appendix, we present the discrete counterparts of identities (3.12) and (3.15). Some
readers will find that (A22) is easier to understand than (3.15).

(iii) Consider the limit � 3 �. Noting that r and s tend to 0, we gather from (2.12) that, for � 3 �,

g�x� � �r � s�x, (3.16)

and
g��x� � r � s. (3.17)

Applying (3.16) and (3.17) to (2.11), we see that, for 0 � x � b,

V�x; b� 3 x as � 3 �, (3.18)

independently of b, � and 
. Furthermore, the limit of (3.8) for � 3 � is 0. Because T is a
positive random variable, we conclude that its limiting distribution is the degenerate distribu-
tion at 0. Loosely speaking, the interpretation of these results is as follows: In the case of
infinite risk, ruin is practically instantaneous, and the expectation of the dividends before ruin
is equal to the initial surplus. That the latter depends neither on 
 nor on � is explained by the
fact that ruin occurs “instantaneously.” Formula (3.18) exhibits the limit of the expectation of
the random variable D. In Section 4, more insight will be provided; we shall determine the limit
of the distribution of D.

4. THE MOMENT-GENERATING FUNCTION OF D
If the barrier strategy with barrier level b is applied, the present value of the resulting dividends until
ruin, D, is a random variable. Its expectation is given by (2.11). However, one might be interested in
more detailed information concerning the distribution of D, for example, the higher order moments of
D. This section examines the moment-generating function of D,

M� x, y; b� � EeyD � X�0� � x�. (4.1)

To obtain a functional equation for M(x, y; b), assume 0 � X(0) � x � b. Then

M� x, y; b� � EM� X�dt�, e�
dty; b��. (4.2)

By expanding the last expression, we obtain, after simplification, the partial differential equation

�2

2
�2M

� x2 � �
�M

� x
� 
y

�M

� y
� 0, (4.3)

which generalizes (2.7). Furthermore, the boundary conditions are

M�0, y; b� � 1 (4.4)

and

�M� x, y; b�

� x
�

x�b

� yM�b, y; b�, (4.5)

which generalize (2.9) and (2.10), respectively.
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To solve (4.3)–(4.5), we let

Vk� x; b� � EDk�, k � 1, 2, 3, . . . (4.6)

Note that V1(x; b) � V(x; b). Then,

M� x, y; b� � 1 � 	
k�1

� yk

k!
EDk� � 1 � 	

k�1

� yk

k!
Vk�x; b�, (4.7)

substitution of which in (4.3) and comparing the coefficients of yk yields the ordinary differential
equations

�2

2
V �k� x; b� � �V�k� x; b� � 
kVk� x; b� � 0, k � 1, 2, 3, . . . (4.8)

It follows from (4.4) that

Vk�0; b� � 0, k � 1, 2, 3, . . . , (4.9)

and from (4.5) that

V�1�b; b� � 1, (4.10)

which is (2.10), and that

V�k�b; b� � kVk�1�b; b�, k � 2, 3, 4, . . . . (4.11)

From (4.8) and (4.9), it follows that, for k � 1, 2, 3, . . . ,

Vk� x; b� � Ck�b� gk� x�, (4.12)

with

gk� x� � erk x � esk x, (4.13)

where rk and sk are the roots of the equation

�2

2
�2 � �� � 
k � 0. (4.14)

To determine the coefficient functions Ck�, we apply (4.12) to (4.10) and to (4.11). We then obtain

C1�b� �
1

g�1�b�
, (4.15)

which confirms (2.11), and

Ck�b� g�k�b� � kCk�1�b� gk�1�b�, k � 2, 3, 4, . . . . (4.16)

Hence,

Ck�b� � k!
g1�b�· · ·gk�1�b�

g�1�b�· · ·g�k�1�b� g�k�b�
, (4.17)

and the k-th moment of D about the origin is

Vk� x; b� � k!
g1�b�· · ·gk�1�b� gk� x�

g�1�b�· · ·g�k�1�b� g�k�b�
, k � 1, 2, 3, . . . . (4.18)
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Finally, by (4.7), the moment-generating function of D is

EeyD� � M�x, y; b� � 1 � 	
k�1

�

yk
g1�b�· · ·gk�1�b�gk�x�

g�1�b�· · ·g�k�1�b�g�k�b�
. (4.19)

Remark

For �3 �, the limiting distribution of D can be determined as follows. Note that rk3 0 and sk3 0 for
� 3 �. Hence, gk(x) � (rk � sk)x and g�k(x) � rk � sk for � 3 �. It follows from this and (4.19) that,
for � 3 �,

EeyD� 3 1 � 	
k�1

�

ykbk�1x � 1 �
xy

1 � by
� 
1 �

x

b� �
x

b

1
1 � by

, y �
1
b

. (4.20)

Thus, the limiting distribution of D is a mixture of the degenerate distribution at 0 and the exponential
distribution with mean b. The weights of this mixture, (b � x)/b and x/b, are, respectively, the
probability of not reaching and the probability of reaching the dividend barrier b before ruin; see (2.24).
Formula (3.18) follows from (4.20).

5. THE DISTRIBUTION OF D(T)
Throughout this section, we consider 
 � 0 and 0 � x � b. Hence, the functions g(x) and V(x; b) are
given by (2.18) and (2.19), respectively. Because D(T) � D when 
 � 0, the moment-generating function
of D(T) (which is the same as X(T)) can be obtained from (4.19) as the limiting case 
 3 0. For
simplicity, we shall not adjust our notation to signify that the interest rate is zero.

From (4.14) we see that rk � 0, sk � �2�/�2, and

gk� x� � g� x� � 1 � e�2� x/�2 (5.1)

for all k. Thus, we obtain from (4.19) and (2.11) that

M� x, y; b� � EeyD�T�� � 1 � 	
k�1

�

ykV�b; b��k�1V�x; b�

� 1 �
V� x; b� y

1 � V�b; b� y
� �1 �

V� x; b�

V�b; b�� �
V� x; b�

V�b; b�

1
1 � V�b; b� y

. (5.2)

This shows that the distribution of D(T) is a mixture of the degenerate distribution at 0 and the
exponential distribution with mean V(b; b). The weights of this mixture are

p � 1 �
V� x; b�

V�b; b�
� 1 �

g� x�

g�b�
(5.3)

and

q � 1 � p �
V� x; b�

V�b; b�
�

g� x�

g�b�
, (5.4)

respectively. Note that p is the probability that the surplus does not reach the barrier b before ruin
occurs. With 
 � 0, V(b; b) is the expectation E[D(T) � X(0) � b].

By considering the visits of the modified surplus at the dividend barrier b that are separated by visits
at the initial level x, we see that D(T) has a compound geometric distribution,

D�T� � D1 � D2 � · · · � DN. (5.5)
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Here, Dj is the dividends paid between visits j and j � 1 at the initial level x. We can rewrite (5.2) as

M� x, y; b� � p 	
n�0

� 
 q

1 � pV�b; b� y�
n

.

This confirms that D(T) has a compound geometric distribution, and it shows that

EN� �
q

p
�

g�x�

g�b� � g�x�
(5.6)

and that the common distribution of the Dj’s is exponential with mean

pV�b; b� � V�b; b� � V� x; b� � V�b � x; b � x� (5.7)

by (5.3). The decomposition of D(T) is illustrated in Figure 2, where N � 2.

Figure 2
The Decomposition of D(T) as a Compound Geometric Random Variable
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Remarks

(i) As x1 b, it follows from (5.3) that p3 0 and, thus, the number of visits N becomes infinite. Also,
we see from (5.7) that E[Dj] 3 0.

(ii) As x2 0, we have p3 1, N becomes zero, and D(T) is the zero random variable. Nevertheless, the
Dj’s have a limiting distribution: It is the exponential distribution with mean V(b; b); see (5.7).

(iii) Consider �3 0 (in addition to 
 � 0). Applying (2.22) to the second to the last expression in (5.2)
yields

M�x, y; b� � 1 �
xy

1 � by
. (5.8)

Note that the right-hand side of (5.8) does not involve � and, more intriguingly, it is identical
to the second to the last expression in (4.20), which was obtained by letting �3 �. This is not
a coincidence, and we can explain it by means of operational time. Let

t̃ � �2t. (5.9)

In the terms of the new time scale, the parameters of the model are:

�̃ � 1, �̃ �
�

�2 , 
̃ �



�2 .

Thus � 3 � means that �̃ 3 0 and 
̃ 3 0.

6. THE OPTIMAL DIVIDEND BARRIER

For a given initial surplus X(0) � x, let b* denote the optimal value of b, that is, the value that maximizes
V(x; b), the expectation of D. From (2.11), we see that this is the value minimizing g�(b). Hence, b* is
the solution of the equation

g��b*� � 0. (6.1)

This leads to

b* �
1

r � s
ln
s2

r2� �
2

r � s
ln
�s

r �, (6.2)

with r and s given by (2.14) and (2.15), respectively. Note that the optimal barrier level b* does not
depend on the initial surplus x. Formula (6.2) can be found in Gerber (1972) and viewed as a limiting
case of formula (1.15) in Gerber (1979, p. 149) and of (7.10) in Gerber and Shiu (1998).

The optimal value of b has a geometric characterization. Let W(x; b), x � 0, be the expectation of D
if the barrier strategy with parameter b is applied. Thus,

W� x; b� � �V� x; b� if 0 � x � b
x � b � V�b; b� if x � b . (6.3)

At the junction x � b, the function W(x; b) is continuous and has a continuous first derivative by (2.10).
Under what condition is also the second derivative continuous, that is, V�(b; b) � 0? From (2.11), we
see that

V�� x; b� �
g�� x�

g��b�
. (6.4)

Hence, V�(b; b) � 0 is equivalent to the condition that g�(b) � 0, which in turn means that b � b* by
(6.1). This geometric characterization of the optimal parameter value is known as a high contact
condition in the finance literature and a smooth pasting condition in the optimal stopping literature.
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With b � b* (and V defined by equation 2.11), (6.3) is Theorem 3.2 of Asmussen and Taksar (1997)
and Theorem 4.2 of Højgaard and Taksar (1999). (The first two plus signs in Theorem 4.2 of Asmussen
and Taksar (1997) should be changed to minus signs.) A main tool of theirs is stochastic control theory
(Hamilton-Jacobi-Bellman equation). Further discussion on the smooth pasting condition can also be
found in Asmussen and Taksar (1997).

7. ANALYSIS OF THE OPTIMAL BARRIER

If the initial surplus is at the optimal barrier, x � b � b*, the differential equation (2.7) becomes

�2

2
0 � �1 � 
V�b*; b*� � 0

because of the condition V�(b*; b*) � 0 and condition (2.10). Hence,

V�b*; b*� �
�



. (7.1)

This formula has been obtained by Gerber (1972). It can also be found in Jeanblanc-Picqué and
Shiryaev (1995, eq. 2.37). At first sight, (7.1) is a surprising result, since �/
 does not depend on � and
is identical to the present value of a perpetuity-certain with continuous payments at a rate of �. In the
deterministic case � � 0 (that is, X(t) � x � �t), ruin does not occur and, for each b � 0, V(b, b) � �/
.
However, for the stochastic case � � 0, ruin does occur and the dividends stop at the time of ruin.

For a better understanding of (7.1), observe that b* is the initial surplus necessary to obtain an
expected total return of �/
. Since the latter is independent of �, the necessary initial surplus b* must
be a function of � to compensate for the risk. In fact, we now show that

�I� b* is an increasing function of �; (7.2)

�II� b*1
�



for �1 �; and (7.3)

�III� b*2 0 for �2 0. (7.4)

The meaning of statement (III) is that, if the business has no risk, there is no need for the company to
hold any surplus. Statement (II) is compatible with (3.18) and (7.1). From statement (II) and equation
(7.1), we see that b* � V(b*; b*), which is a special case of the inequality x � V(x; b*), for 0 � x � b*.
The latter can be reasoned as follows: If the initial surplus is x, applying the barrier strategy with
parameter b* is better than paying out the amount x immediately with instantaneous ruin. We shall in
fact show in Section 8 that

x � V� x; b� for 0 � x � b � b*. (7.5)

To prove these three statements, we need an alternative form for (6.2). Motivated by

�s

r
�

��2 � 2
�2 � �

��2 � 2
�2 � �
,

which is derived from applying formulas (2.14) and (2.15), we introduce a new variable

z �
�

��2 � 2
�2 , (7.6)
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so that

�s

r
�

1 � z

1 � z
. (7.7)

Note that z is a decreasing function of �, and that z � 0 for � � �, and z � 1 for � � 0. Now, (6.2)
becomes

b* �
�2

�
z ln

1 � z

1 � z
(7.8)

�
�

2
 
1
z

� z� ln
1 � z

1 � z
. (7.9)

For 0 � z � 1, we have

ln
1 � z

1 � z
� ln�1 � z� � ln�1 � z� � 2
z �

z3

3
�

z5

5
�

z7

7
� · · ·�.

Hence,

b* �
�


 
1 �
2
3

z2 �
2

15
z4 � · · · �

2
�2n � 1��2n � 1�

z2n � · · ·� . (7.10)

We see from (7.10) that b* is a decreasing function of z, 0 � z � 1, and that b*1 �/
 for z2 0, proving
(7.2) and (7.3). Furthermore,

2
3

�
2

15
� · · · �

2
�2n � 1��2n � 1�

� · · · � 1. (7.11)

To verify (7.11), use

2
�2n � 1��2n � 1�

�
1

2n � 1
�

1
2n � 1

to write its left-hand side as a telescoping series. It now follows from (7.10) and (7.11) that b* 2 0 for
z 1 1, proving (7.4).

8. THE LEVERAGE RATIO

For 0 � x � b � b*, consider the ratio

R� x; b� �
V� x; b�

x
, (8.1)

which is the expected present value of all dividends per unit of initial capital or surplus. Because
V(x; b)/x � [V(x; b) � V(0; b)]/(x � 0), we see that R(x; b) can be interpreted as the slope of a secant.
Thus, R(0; b) is defined as the derivative V�(0; b). Since g(x) is a concave function for x � b*, it follows
from (2.11) that, for 0 � x � b � b*, V(x; b) is also a concave function of x. Hence, R(x; b) is a
decreasing function of x, 0 � x � b � b*, and

R�b; b� � V��b; b� � 1 (8.2)

by (2.11). The inequality R(x; b) � 1 is equivalent to inequality (7.5). Also, the fact that R(x; b) is a
decreasing function of the initial capital x has a somewhat shocking implication: If the investor is only
interested in the leverage ratio, he or she would want to invest in companies with a low degree of
capitalization!
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For the remainder of this section, we consider b � b*, the optimal barrier level, and 0 � x � b*. The
minimum leverage ratio is

R�b*; b*� �
V�b*; b*�

b*
� 2�
1z � z� ln

1 � z

1 � z�
�1

� 
1 �
2
3

z2 �
2

15
z4 � · · · �

2
�2n � 1��2n � 1�

z2n � · · ·��1

(8.3)

by (7.1), (7.9), and (7.10), with z given by (7.6). Obviously, R(b*; b*) � 1, confirming (8.2). On the
other hand, the maximum leverage ratio is

R�0; b*� � V��0; b*� �
r � s

rerb* � sesb* (8.4)

by (3.9). Substituting b* in (8.4) by (6.2) yields

R�0; b*� �
r � s

r��s/r�2r/�r�s� � s��s/r�2s/�r�s� . (8.5)

Now, the ratio �s/r is given by (7.7). Also, it follows from (7.7) that r/(r � s) � (1 � z)/2 and that
s/(r � s) � �(1 � z)/2. Applying these to (8.7), we obtain

R�0; b*� �
2

�1 � z�
1 � z

1 � z�
1�z

� �1 � z�
1 � z

1 � z�
��1�z� � 
1 � z

1 � z�
z

. (8.6)

From (8.3) and (8.6), we see that both the minimal and the maximal leverage ratios, R(b*; b*) and
R(0; b*), are increasing functions of z, 0 � z � 1. Rewriting (7.6) as

z �
1

�1 � 2
��/��2 , (8.7)

we see that both R(b*; b*) and R(0; b*) are decreasing functions of both 
 and the “coefficient of
variation” �/�.

Formulas (8.8) and (8.9) show that R(0; b*) 3 1 as �/� 3 �. Now, R(0; b*) � R(x; b*) for 0 � x �
b*. Recall from (7.3) that b* 3 �/
 as � 3 �. Hence, given � � 0 and 
 � 0, we have R(x; b*) 3 1 as
� 3 � for 0 � x � �/
. In the case of infinite risk, it is not possible to have an expected total return
exceeding the initial capital.

On the other hand, R(b*; b*) � (�/
)/b* by (7.1). Recall from (7.4) that b* 3 0 as � 3 0. Hence, as
�3 0, R(b*; b*)3 � and R(0; b*)3 �. If the business has no risk, the leverage ratio becomes infinite.

Remark

A special case of (3.12) is

L�b*; b*� � e�2�b*/�2 V�(0; b*) � e�2�b*/�2
1 � z

1 � z�
z

(8.8)

by (8.4) and (8.6). Substituting b* on the right-hand side of (8.8) by (7.8) yields

L�b*; b*� � 
1 � z

1 � z�
�2z
1 � z

1 � z�
z

� 
1 � z

1 � z�
z

, (8.9)
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with z given by (8.7). From this and (8.6), we see that

R�0; b*� L�b*; b*� � 1. (8.10)

This identity does not seem to have an apparent interpretation.

9. THE IMPLIED UTILITY FUNCTION

The value of an initial capital of x is V(x; b*), 0 � x � b*. Thus, V(x; b*) can be interpreted as some
sort of a utility of x. We shall show that V(x; b*), indeed, has the properties of a risk-averse utility
function. In view of (2.11), we examine the function

g� x� � erx � esx, 0 � x � b*, (9.1)

for its properties as a utility function. Note that

g�� x� � rerx � sesx � 0.

The implied risk aversion function is

�� x� �
�g��x�

g��x�
�

�r2erx � s2esx

rerx � sesx . (9.2)

Observe that

��� x� �
rs�r � s�2erx�sx

�rerx � sesx�2 (9.3)

after simplification. Because rs � �2
/�2 � 0, it follows that �(x) is a strictly decreasing function of x.
As �(b*) � 0 by (6.1), we have �(x) � 0 for 0 � x � b*. Furthermore, we note that

��0� � ��r � s� �
2�

�2 (9.4)

by (9.2) and (3.11).

10. THE EXPECTED UTILITY OF D
One way to take into account the randomness of D is to calculate its expected utility. Let u(x) be an
appropriate risk-averse utility function. By the term “risk-averse,” we mean that the function has the
properties u�(x) � 0 and u�(x) � 0. Examples are the quadratic utility function with level of saturation s,

u� x� � x �
1
2s

x2, x � s, (10.1)

and the exponential utility function with parameter � � 0,

u� x� �
1
�

�1 � e��x�, �� � x � �. (10.2)

We are interested in the expected utility, E[u(D)].
If the barrier strategy with level b is applied, the expected utility for (10.1) and (10.2) can be

calculated as follows. For the quadratic utility function (10.1), we obtain

Eu�D�� � ED� �
1
2s

ED2� � V1�x; b� �
1
2s

V2�x; b� �
g1�x�

g�1�b�
�

1
s

g1�b�g2�x�

g�1�b�g�2�b�
, (10.3)
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according to (4.18). For the exponential utility function (10.2), we get

Eu�D�� �
1
�

�1 � Ee��D�� �
1
�

�1 � M�x, ��; b�� � 	
k�1

�

����k�1
g1�b�· · ·gk�1�b�gk�x�

g�1�b�· · ·g�k�1�b�g�k�b�
, (10.4)

according to (4.19).
This leads us to the following question: What is the optimal dividend strategy if the objective is to

maximize the expected utility of the present value of the dividends until ruin? If the utility function is
quadratic or exponential, the optimal strategy cannot be a barrier strategy, because, if it were, we would
maximize expressions (10.3) or (10.4), respectively, and the optimal value of b would not depend on x.
But this is obviously not the case. Hence, maximizing the expected utility of the present value of the
dividends until ruin is a new and challenging problem.
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APPENDIX

The goal of this appendix is to derive the discrete counterparts of identities (3.12) and (3.15) for the
original De Finetti (1957) model. In this model, the surplus at time t is

X�t� � x � G1 � · · · � Gt (A1)

t � 1, 2, 3, . . . . Here x � X(0) is the initial surplus (a positive integer), and the annual net gains G1,
G2, . . . are independent and identically distributed random variables with

Pr�Gt � 1� � �, Pr�Gt � �1� � 1 � �, (A2)

where � � 1
2 . Let

M�t� � max�x, X�1�, . . . , X�t��. (A3)

The dividend barrier b is a positive integer, b � x. Then the cumulative dividends by time t are given
by

D�t� � �0 if M�t� � b,
M�t� � b if M�t� � b. (A4)

Let dt denote the dividend paid at time t. Thus,

D�t� � d1 � d2 � · · · � dt. (A5)

Note that the random variable dt assumes only the values 0 or 1. Let 0 � v � 1 be a discount factor,

T � min�t � 0 � X�t� � D�t� � 0� (A6)
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be the time of ruin, and

V� x; b� � E�	
t�1

T

vtdt�X�0� � x� (A7)

be the expectation of the present value of the dividends until ruin.
Let x � 1, 2, . . . , b � 1. By distinguishing whether G1 � 1 or G1 � �1, we see that

V� x; b� � v��V� x � 1; b� � �1 � ��V� x � 1; b��. (A8)

Thus, as a function of x, V(x; b) is a linear combination of rx and sx, where 0 � s � 1 � r are the
solutions of the indicial equation

v��2 � � � v�1 � �� � 0. (A9)

The coefficients of this linear combination are determined from the boundary conditions

V�0; b� � 0 (A10)

and

V�b; b� � v��1 � V�b; b�� � �1 � ��V�b � 1; b��. (A11)

It follows that

V� x; b� �
rx � sx

�r � 1�rb � �s � 1�sb , (A12)

x � 0, 1, . . . , b. In particular,

V�1; b� �
r � s

�r � 1�rb � �s � 1�sb . (A13)

Let

L� x; b� � EvT � X�0� � x� (A14)

denote the expected discounted value of a payment of 1 at the time of ruin. As a function of x, L(x; b)
satisfies a difference equation like (A8). Hence, L(x; b) is also a linear combination of rx and sx. The
boundary conditions are now

L�0; b� � 1 (A15)

and

L�b; b� � v��L�b; b� � �1 � �� L�b � 1; b��. (A16)

It follows that

L� x; b� �
�r � 1�s��b�x� � �s � 1�r��b�x�

�r � 1�s�b � �s � 1�r�b , (A17)

x � 0, 1, . . . , b. In particular,

L�b; b� �
r � s

�r � 1�s�b � �s � 1�r�b � �rs�b
r � s

�r � 1�rb � �s � 1�sb � �rs�bV�1; b� (A18)

by (A13). From (A9) we gather that rs � (1 � �)/�. Hence,

L�b; b� � 
1 � �

� �b

V�1; b�, (A19)
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which is the counterpart of (3.12). Now, it follows from (A14) and (A7) that

L� x; b� � 	
t�1

�

vt Pr�T � t � X�0� � x� (A20)

and

V�x; b� � 	
t�1

�

vt Pr�dt � 1 and T � t � X�0� � x�. (A21)

Because (A19) holds for all v � (0, 1), we conclude that, for t � 1, 2, 3, . . . ,

Pr�T � t � X�0� � b� � 
1 � �

� �b

Pr�dt � 1 and T � t � X�0� � 1�. (A22)

The probabilistic identities (A22) correspond to (3.15).

Figure 3
Duality of the Sample Paths
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Formula (A22) can be proved directly using the notion of duality, which, as pointed out by Feller
(1971), enables one “to prove in an elementary way theorems that would otherwise require deep
analytic methods” (p. 395). First observe that (A22) is equivalent to

Pr� X�t � 1� � 1 and T � t � 1 � X�0� � b� � 
1 � �

� �b�1

Pr� X�t � 1� � b and T � t � 1 � X�0� � 1�. (A23)

There is a one-to-one correspondence between (a) the sample paths that contribute to the left-hand side
of (A23) and (b) the sample paths that contribute to the right-hand side of (A23): For a given sample
path of the type (a), there is a dual sample path of type (b), which is obtained by a reversal of the time
axis. This is illustrated in Figure 3, where b � 5, t � 20, d � 4, m � 5, and n � 9. Now consider a sample
path of type (a). Let d be the total dividends by time t � 1, m the number of gains of �1 when the
surplus at the beginning of the period is less than b, and n the number of gains of �1 by time t � 1. We
must have n � m � b � 1. Hence, the probability of such a sample path is

�d�m�1 � ��n � �d�n��b�1��1 � ��m��b�1�. (A24)

For the dual sample path, the total dividends are also d, the number of gains of �1 when the surplus at
the beginning of the period is less than b is now n, and m is now the number of gains of �1. Thus, the
probability of the dual sample path is

�d�n�1 � ��m. (A25)

Hence, the probability of a given sample path of type (a) is [(1 � �)/�]b�1 times the probability of the
dual sample path. This proves (A23).
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comparison to the GPD. In particular, the approx-
imation error of the new model is of order
o(A(u)), while the Pareto model (� 
 0) and the
GPD (� 
 �1) both have an approximation error
of order O(A(u)).

CONCLUSION

Extreme-value theory justifies a one-parameter
extension of the classical GPD model for excesses
over a high threshold. The new model gives an
accurate approximation of the true excess distri-
bution for much lower thresholds than the GPD is
capable of. For the SOA’s Large Claims Database,
the model provides an adequate description of the
complete data set of large claims.
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“Optimal Dividends: Analysis
with Brownian Motion” Hans U.
Gerber and Elias S.W. Shiu,
January 2004

OLIVIER DEPREZ*
I enjoyed reading this paper, which treats a diffi-
cult mathematical topic in an accessible lan-
guage. The paper brought back positive memories
of my days at the university. The reader appreci-
ates that, in many cases, the paper presents the
chicken (the algebraic derivation of a formula) in
conjunction with the egg (the interpretation of
the formula).

When I saw formula (2.21) of the paper and
read its interpretation, it occurred to me that this
formula could be generalized in two ways: (1) in
the case where the initial surplus is not on the
barrier, and (2) in the case where the force of

interest is positive. Let 0 � x � y � b, and
suppose X(0) 
 y. Because of the continuous
trajectories of the surplus process, the dividends
can be decomposed as those before the surplus
ever drops to the level x and those afterwards.
Hence, by interpretation,

V� y; b� � V� y � x; b � x�

� L� y � x; b � x� � V� x; b�,

where L is defined in formula (3.1) of the paper.
Thus,

L� y � x; b � x� �
V� y; b� � V� y � x; b � x�

V� x; b�
.

This is another way to calculate the L function,
starting with formulas (2.11) and (2.12) for the V
function.

HANSJÖRG ALBRECHER*
This paper by Professors Gerber and Shiu is an
interesting contribution to the field and provides
valuable additional insight into the problem of
optimizing dividend payments. I would like to add
two comments:

In Section 4, the moment-generating function
M(x, y; b) 
 �(eyD�X(0) 
 x) of the present value
D of the dividend payments until ruin is deter-
mined. The same technique can be applied to
obtain M(x, y; b) in the classical model of risk
theory. Here, the aggregate claims constitute a
compound Poisson process, say with claim fre-
quency � and individual claim amount distribu-
tion F(z). Then, by conditioning on the occur-
rence of a claim (and its amount) in the interval
from 0 to dt, we see that for 0 � x � b,

M� x, y; b� � �1 � � dt� M� x � c dt, ye�� dt; b�

� � dt �
0

x�c dt

M�x � c dt � z, ye�� dt; b� dF�z�

� � dt �
x�c dt

�

dF� z� � o�dt�

*Olivier Deprez, Ph.D., is a Pension Actuary, Neustadtgasse 7, CH-
8001 Zurich, Switzerland, e-mail: olivier.deprez@deprez.ch.
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sity of Technology, Steyrergasse 30, 8010 Graz, Austria, and a post-
doctoral research fellow at Katholieke Universiteit Leuven (Fellowship
F/03/035), e-mail: albrecher@tugraz.at.
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� �1 � � dt� M� x � c dt, ye�� dt; b�

� � dt �
0

x

M� x � z, y; b� dF� z�

� � dt �
x

�

dF� z� � o�dt�.

Taylor expansion and collecting all the terms of
order dt yields

c
�M� x, y; b�

� x
� �y

�M� x, y; b�

� y
� �M� x, y; b�

� � �
0

x

M� x � z, y; b� dF� z� � ��1 � F� x��

� 0. (1)

Similarly, for x 
 b we have

M�b, y; b� � �1 � � dt�eyc dtM�b, ye�� dt; b�

� � dt �
0

b

eyc dtM�b � z, ye�� dt; b� dF� z�

� � dt �
b

�

eyc dt dF� z� � o�dt�

� �1 � � dt�eyc dtM�b, ye�� dt; b�

� � dt �
0

b

M�b � z, y; b� dF� z�

� � dt �
b

�

dF� z� � o�dt�,

from which it follows that

cyM�b, y; b� � �y
�M�b, y; b�

� y
� �M�b, y; b�

� � �
0

b

M�b � z, y; b� dF�z� � ��1 � F�b�� � 0.

Setting x 
 b in formula (1) and comparing the
resulting formula with the last formula, we obtain
the boundary condition

�M� x, y; b�

� x
	

x
b

� yM�b, y; b�, (2)

which corresponds to (4.5) of the paper. Using the
representation (4.7) of the paper in (1) and (2)
here, and equating the coefficients of yk, directly
yields the integro-differential equations

c
�Vk� x, b�

� x
� �� � k��Vk� x, b�

� � �
0

x

Vk�x � z, b� dF�z� � 0

�k � 1, 2, . . . �, (3)

together with the boundary conditions

�Vk� x, b�

� x
	

x
b

� kVk�1�b, b� �k � 1, 2, . . . �,

(4)

where V0(b, b) 
 1. Equations (3) together with
(4), for the moments Vk(x, b) of D in the classical
risk model with constant dividend barrier coin-
cide with (2.1) and (2.2) of Dickson and Waters
(2004), who recently derived this result using a
different technique. Note that the above approach
is particularly simple.

One might wonder whether there is an intuitive
reason for the fact that the k-th moment of D depends
on lower moments only through the (k � 1)-th mo-
ment (cf. (4) and correspondingly condition (4.11) of
the paper). For that purpose, consider a direct deriva-
tion of Vk(x, b) in the classical risk model by the
differential argument: For 0 � x � b, we have

Vk� x, b�

� �1 � � dt�e�k� dtVk� x � c dt, b�

� e�k� dt� dt �
0

x�c dt

Vk�x � c dt � z, b� dF�z�

� o�dt�

� �1 � � dt�e�k� dtVk� x � c dt, b�

� � dt �
0

x

Vk� x � z, b� dF� z� � o�dt�,

from which we obtain equation (3) by expansion.
Now, for x 
 b,
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Vk�b, b�

� �1 � � dt�E��c dt � e�� dtD�k�X�0� � b�

� � dt �
0

b

E��c dt � e�� dtD�k�X�0� � b � z� dF�z�

� � dt �
b

�

�c dt�k dF� z� � o�dt�

� �1 � � dt�E��c dt � e�� dtD�k�X�0� � b�

� � dt �
0

b

E�Dk�X�0� � b � z� dF�z� � o�dt�,

so that, by the binomial formula, we see that only
the (k � 1)-th and the k-th moment contribute to
the significant terms of order dt:

Vk�b, b� � kc dtVk�1�b, b�

� �1 � k� dt�Vk�b, b� � � dtVk�b, b�

� � dt �
0

b

Vk�b � z, b� dF� z� � o�dt�,

from which we get

kcVk�1�b, b� � �� � k��Vk�b, b�

� � �
0

b

Vk�b � z, b� dF� z� � 0,

and equation (4) finally follows by continuity.
My second comment refers to Section 10, where

the authors point out the need to study the maxi-
mization of the expected utility of the sum of dis-
counted dividend payments until ruin. A related
problem is to try to maximize the expectation of the
sum of the discounted utilities of the dividend pay-
ments until ruin instead (note that for linear utility
functions the two problems coincide, but in general
they are different). Hubalek and Schachermayer
(2004) investigated the latter problem in detail for
power utility functions by means of the correspond-
ing Hamilton-Jacobi-Bellman equation, and in that

case it turns out that the optimal dividend strategy
is indeed not of barrier type.
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AUTHORS’ REPLY

We are grateful to receive these two insightful dis-
cussions. Dr. Deprez’s elegant observation is in the
time-honored tradition of “general reasoning” in
actuarial science. Dr. Albrecher has shown that the
boundary conditions at the barrier are the same in
the compound Poisson model as in the Brownian
motion model; see formulas (2.10), (4.5) and (4.11)
in the paper, and (2) and (4) in his discussion. We
shall show how these conditions can be obtained by
a unified and general approach. This approach is
intuitive and simple, but it might not satisfy a math-
ematical purist. We assume that the surplus process
of the company is a Lévy process without any up-
ward jumps. For a given nonnegative, differentiable
function w(z), z � 0, we define

�� x, y; b� � E�w�yD��X�0� � x�, 0 � x � b,

(R1)

where D is the present value of all dividends until
ruin. We claim that the following boundary con-
dition holds:

��� x, y; b�

� x
	

x
b

� yE�w��yD�� X�0� � b�. (R2)

Note that (4.11) and (4) are the special case with
w(z) 
 zk (and y 
 1), and (4.5) and (2) are the
special case with w(z) 
 ez.

To obtain (R2), we use the notation D 
 Dx if
X(0) 
 x and consider two situations, X(0) 
 b
and X(0) 
 b � h with h positive and “small.”
Then the following approximate relation holds
between the random variables Db and Db–h:

Db 
 h � Db�h.

Hence,

w� yDb� � w� yDb�h� 
 yhw�� yDb�,
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taking expectations of which yields

��b, y; b� � ��b � h, y; b� 
 yhE�w��yDb��.

Now, we divide both sides by h and let h 3 0 to
obtain (R2).

In the compound Poisson model, the function
�(x, y; b) satisfies for 0 � x � b the equation

c
��� x, y; b�

� x
� �y

��� x, y; b�

� y
� ��� x, y; b�

� � �
0

x

�� x � z, y; b� dF� z�


 ��w�0��1 � F�x��, (R3)

which generalizes Albrecher’s equation (1). In
fact, (R3) can also be obtained by the infinitesi-
mal method. Alternatively, consider a time inter-
val from 0 to h, 0 � h � (b – x)/c. Then, by
conditioning on the time and amount of the first
claim in this interval, we see that

�� x, y; b�

� e��h�� x � ch, e��hy; b�

� � �
0

h

e��t �
0

x�ct

��x � ct � z, e��ty; b�dF�z�dt

� � �
0

h

e��tw�0��1 � F�x � ct�� dt.

Differentiating the above with respect to h, setting
h 
 0, and rearranging, we obtain (R3).

In the Brownian motion model, the function
�(x, y; b) satisfies for 0 � x � b the equation

�2

2
�2�� x, y; b�

� x2 � �
��� x, y; b�

� x

� �y
��� x, y; b�

� y
� 0, (R4)

which is the same partial differential equation as
(4.3) of the paper and can be proved by the same
method. We note that (R4) can be obtained from
(R3) as a limit, because the Brownian model can be
viewed as a limit of the compound Poisson model,
as we mentioned in the paper. Let us illustrate this
with a family of compound Poisson models of con-
stant jump size. For ε 	 0, we consider the com-

pound Poisson model with the jump size distribu-
tion function

F� z� � F� z; ε� � �0 z � ε
1 z � ε

and parameters c 
 c(ε) and � 
 �(ε) such that
the first two moments are matched,

� � c � �ε, �2 � �ε2. (R5)

Then, in the limit ε 3 0, the Brownian motion
model with parameters � and �2 is obtained.
What happens to (R3) in the limit? We may as-
sume ε � x. Then, F(x) 
 1, and the right-hand
side of (R3) is zero. Also,

�
0

x

�� x � z, y; b� dF� z� � �� x � ε, y; b�,

which, by the Taylor series expansion, is

��x, y; b� � ε
���x, y; b�

�x
�

ε2

2
�2��x, y; b�

�x2 � · · ·

Using this and (R5), we see that, in the limit ε 3
0, equation (R3), indeed, becomes the partial dif-
ferential equation (R4).

Let {S(t)} be a compound Poisson process inde-
pendent of the standard Wiener process {W(t)} and
with Poisson parameter � and positive summands
whose common probability distribution function is
F. Suppose that the unmodified surplus process is
modeled as

X�t� � x � ct � �W�t� � S�t�; (R6)

then the function �(x, y; b) satisfies for 0 � x �
b the equation

�2

2
�2�� x, y; b�

� x2 � c
��� x, y; b�

� x

� �y
��� x, y; b�

� y
� ��� x, y; b�

� � �
0

x

�� x � z, y; b� dF� z�

� ��w�0��1 � F�x��, (R7)

which contains both (R3) and (R4) as special cases.
We observe that (R7) can be reformulated in terms
of the infinitesimal generator of the process {X(t)}.
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Albrecher’s second and final comment points
out an important distinction. In our paper, we
consider the expected utility of the sum of the
discounted dividends, while other authors study a
related, but substantially different problem,
which is to maximize the expectation of the sum
of the discounted utilities of the dividends. Duffie
(2001, chap. 9) calls this Merton’s problem, in
honor of the pioneering work by the Nobel laure-
ate Robert Merton (1969, 1971). Merton’s papers
are reprinted in Merton (1990). Also see Björk
(1998, chap. 14). The problem considered by Hu-
balek and Schachermayer (2004), mentioned by
Albrecher, is difficult in that, in their model, as in
ours, the dividends stop at the time of ruin.
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“Credit Standing and the Fair
Value of Liabilities: A Critique,”
Philip E. Heckman, January 2004

M. W. CHAMBERS*
Dr. Heckman deserves high praise, even acco-
lades, for developing this bold illumination of the
folly of reflecting the credit standing of the obli-
gated entity in the calculation of the fair value of
its liabilities for presentation in its public ac-
counts. He has managed to cut through the advo-
cates’ circular arguments (which are grounded in

misguided theory) to expose their specious foun-
dations.

In his introduction, Dr. Heckman rightly de-
cries the failure of the authors of the American
Academy of Actuaries Public Policy Monograph
on Fair Valuation of Insurance Liabilities to take
a position on the credit standing issue. Let me
say, as a member of the task force that developed
the monograph, that he is not the only one who is
dissatisfied with the document in that respect.
There were at least three of us in the group who
felt that the monograph should specifically reject
reflection of credit standing. At the same time,
there were at least three strong advocates of the
opposite view. The latter were of no mind to have
their view suppressed, so ultimately, if the task
force was to produce any document at all, the two
extreme positions were forced to take the middle
road of noncommittal. Unfortunately, the mono-
graph is a lesser document as a result.

Dr. Heckman ties the problem to two particular
roots. The first root is the ingrained thinking of
the accounting profession which has been shaped
by more than a half century of commitment to
the ‘religion’ of historical cost accounting. The
long history of that approach to the preparation of
public accounts has deluded many of our ac-
counting brethren into believing that certain of
the constraints that defined that specific method-
ology are axiomatic truths that apply in all con-
ceivable accounting regimes. The primary exam-
ple of this, as pointed out by Dr. Heckman, is
FASB’s assertion in 2000 that “the act of borrow-
ing money at prevailing interest rates should not
give rise to either a gain or a loss.” Why? Why
not? Certainly FASB has not provided a logical,
meaningful response. Dr. Heckman has, in this
paper, demonstrated that this presumption on
FASB’s part is mistaken.

Unfortunately, this myth is not confined to FASB.
Latterly, in its plans for Phase I implementation of
International Accounting Standards for insurance
contracts, the IASB continues to cling to this mis-
conception by declaring that there should be no
profit (or loss) arising in financial statements at the
point of sale of an insurance contract.

The second basic root of the problem is that the
accountants have turned to financial economics
to develop their views of fair value. Now, financial
economists have developed some wonderful tech-
niques for assessing and valuing risk. Unfortunately,

* M. W. Chambers, F.S.A., F.C.I.A., M.A.A.A., Hon. F.I.A., is retired
and currently resides at 604 Fox Mill Place, London, ON N6J 2B2,
Canada, e-mail: mo.chambers@londonlife.com.
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