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ABSTRACT. - The first k coordinates of a point uniformly distributed
over the n-sphere are independent standard normal variables, in the limit
as n - oo with k fixed. If k - oo the theorem still holds, even in the sense
of variation distance, provided k = o (n). The main result of this paper is a
fairly sharp bound on the variation distance. The bound gives another
proof of the fact that orthogonally invariant probabilities on R °° are scale
mixtures of sequences of iid standard normals. Similar results are given
for the exponential, geometric and Poisson distributions. We do not have
the right general theorem.
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RESUME. - Les k premières coordonnées d’un point uniformément
distribué sur la sphere de dimension n se comportent comme des variables
gaussiennes réduites indépendantes quand n -~ oo avec k fixe. Si k - oo le
théorème reste vrai meme au sens de la distance de la variation, pourvu
que k = o (n). Le principal résultat de cet article est une borne assez precise
sur la distance de la variation. Cette borne donne une autre dimension du

fait que des probabilités invariantes par les transformations orthogonales
sur R °° sont des melanges de suites de variables gaussiennes réduites

indépendantes. On donne des résultats analogues pour des distributions
exponentielles géométriques et de Poisson. Nous ne savons pas de théorème
représentant le bon cadre general.

1. INTRODUCTION

Let ~ be chosen at random on the surface of the sphere

{03BE: 03A3 03BE2i=n}. Then 03BE1, ... , 03BEk are for k fixed, in the limit oo,

independent standard normal variables. This result is usually - but we
think incorrectly - attributed to Poincaré ( 1912). The history, and the
connection with Lévy’s work, will be discussed in Section 6 below. We
allow k = o (n), a growth condition which is necessary as well as sufficient.
We get a reasonably sharp bound on the variation distance between the
law ..., ~~ and the law of k independent standard normals: this
bound is essentially 2 k /n.
More formally, let Qnrk be the law ..., ~k, when ( ~ 1, ..., ~k,

03BEk+1,..., 03BEn) is uniformly distributed over the surface of the sphere

{ 1;: = r2 . Let If be the law of ..., where the 03B6’s are

independent standard normals. Section 2 proves

The order k/n is right, although the 2 is not sharp. The inequality has
content only when k  ( 1 /2) n - 3.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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The inequality is connected to a representation theorem of the de Finetti
type. Let X 1, X 2, ... be infinite sequence of random variables. Call this
sequence orthogonally invariant if for every n, the law of X 1, ..., Xn
is invariant under all orthogonal transformations of R n. A sequence is

orthogonally invariant iff it is a scale mixture of iid standard normals, a
result usually attributed to Schoenberg ( 1938); and see Freedman (1962).
This theorem is false for finite sequences; indeed, is orthogonally
invariant but not a mixture of normals.

Inequality ( 1), however, does lead to a finite version of the representation
theorem, and then the infinite version follows by a passage to the limit.
For the finite version, suppose (X 1, ... , Xn) are n orthogonally invariant
random variables. Let Pk be the law of Xi, ..., Xk; recall that ~1, ~2, ...
are independent standard normal variables and Pa is the law of

a~l, ... , Let P~,k = where Il is a probability on [0, oo).

(2) THEOREM. - If ..., Xn are orthogonally invariant, there is a

probability ~, on [0, oo) such that for 1 _ k __ n - 4,

In short, the first k of n orthogonally invariant variables are within
about 2 k/n of a scale mixture of iid standard normals. This is almost

immediate from (1). Indeed, consider the class of orthogonally invariant
probabilities Pn in Rn. This is convex, and the typical extreme point is the
uniform distribution on the sphere of radius r. Clearly, if PE Pn,

where ~, is the P-law

By convexity, it is enough to prove (2) for the extreme and that is

~T~
(1). The mixing measure  can be taken as the law of / - 03A3 X?.

B ~ ~=1

Again, the ~ rate is sharp, although the 2 is wrong. This is a bit more
complicated to argue: if P=Q~,~,~ and ~ is bounded away from 1,
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then I is nearly minimized when ~, is point mass at 1: compare

(Diaconis and Freedman, 1980, sec. 4) on the binomial.
The infinite case, ie Schoenberg’s representation theorem for orthogonal

invariance, follows from the finite. Let Xi, X2, ... be an infinite sequence
of orthogonally invariant random variables, with law P on R °°. Let Pa
be the law of ... where the ç’s are iid standard normals. Let

P, = 

(3) THEOREM. - Let X 2, ... be orthogonally invariant. Then there is
a unique y with

Proof - For each n, let ..., Xn be the first n variables in the
sequence, with law Pn. Clearly, Apply theorem (2), getting a
probability Jln on [0, oo ) with

The sequence ~" is tight, because

goes to zero if n ~ oo and then oc --~ oo : but Prob ~ ~ > a ~ -~ 1 as

oo . For existence, let fl be a subsequential limit of fln: clearly,
P~ weak star along the subsequence. For uniqueness,

determines by the uniqueness theorem for Laplace transforms. For a
more general and less analytic proof of uniqueness, see Dubins and
Freedman (1979, Theorem 3.4). For an even more abstract version of
uniqueness, see Diaconis and Freedman ( 1984, Theorem 4 . 15). 0
We have similar results in three other cases. Again, the rates are sharp,

but not the constants. The argument from the bound to the finite version
of de Finetti’s theorem to be the infinite is the same in all cases, and will

not be discussed in detail each time; nor will the sharpness of the rates.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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The exponential

If ~ _ (~1, ..., ~n) is uniform on the simplex ~~ >__ 0 then

~1, ..., ~k are nearly independent and exponential with parameter n/s :
the variation error is at most

This leads to a characterization of mixtures of independent exponential
variables, as uniform on the simplex given the sum. Details on the bound
are in Section 3.

The geometric

This follows the pattern for the exponential, restricting attention to
nonnegative integer-valued variables. The exact bound is more compli-
cated :

Details on the bound are in Section 4.

The Poisson

The analog of Poincaré’s theorem is a Poisson approximation to the
multinomial: Drop s balls into n boxes. Count the number falling into
box 1, box 2, ..., box k. These k counts are nearly iid Poisson variables
with parameter s/n: the variation error at most 1.2 k/n, according to

Kersten ( 1963); also see Vervaat (1970). Mixtures of iid Poisson variables
can now be characterized as being conditionally multinomial given their
sum. Details on the bound are in Section 5.

2. THE NORMAL CASE

We begin with some general remarks on variation distance. Let P and
Q be probabilities on the measurable space (Q, F). Then
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If F is understood, it may dropped. The 2 is a conventional nuisance

factor. Clearly,

the sup being taken over all F-measurable cp with 0  cp _ 1.
If P and Q are absolutely continuous with respect to a 03C3-finite reference

measure p, having densities p and q, then

where f ~ =fwhenf>O and 0 otherwise.
Let E be a sub o-field of F which is sufficient in the the sense that for

all 

(2. 4) LEMMA. - If 03A3~F is sufficient, 

Proof. - In the other direction, if 
then

where (p=P(A X) and (2 . 2) was used for the inequality. 0
We are now ready to prove inequality (1).

Proof of (1). - Since variation distance is invariant under 1-1 mappings,
e. g. scaling, it suffices to take r = In so c~ = r/~n =1. Recall that

n

~ _ ( ~ ~ ~ ~ ~ ~ ~ ~x~ ~+1, ... , ~n) is uniform on the while çt,
i

~ ... are iid N(0, 1). Let Q be the Qnrk-law ... + ~~ and P the
law ... + ~k . By lemma ( 2 . 4),

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We realize Q as the law ..., ~n/R, where

the law of

i. e., n times a beta [k/2, (n - k)/2] variable (Cramer, 1946, sec. 18 . 4).
Thus, Q has density

On the other hand, P is xk with density

(Cramer, 1946, sec. 18 .1 ) . By (2. 3)

Clearly,

where

We must estimate h and A, and this is the core of the proof. We begin
with h, and claim
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Indeed, an easy calculation shows that

Next, we claim

Indeed, I-’ (z + 1 ) = 2 I-’ (z), so

Then

This proves (2. 8). Combining (2. 7-8) gives

If k is even with 1 ~ k __ n - 3, then (2 . 9) and (2.6) show

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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If k is odd with 1 _ k _ n - 4, then k + 1 is even, and

This completes the proof. 0

(2.10) Remark. - Lemma (2. 4) is used only to simplify the calculations;
k

indeed, with t2 = ~ x2, the density of at ... xk) is
1

and 0 for 

(2.11) Remark on unique lifting. - The uniqueness part of Theorem (3)
is not surprising, because uniqueness always holds for infinite versions of
de Finetti’s theorem. For finite versions, the situation is more complicated:
for example, if Pp makes ..., Xn iid coin tosses with success probabil-

ity p, then only determines the first n moments of 11, so 11 is

not unique. For orthogonally invariant probabilities, however, uniqueness
holds even for the finite version of de Finetti’s theorem - and a little more.

To state the result, let Cn be the convex set of all orthogonally invariant
probabilities on Rn, and PE Cn}, iff 03C0=Pk is the

P-law of the first k coordinates, for some Then

(i) Cn is a simplex with extreme points the Qnrn.
(ii) P is uniquely determined by Pk.
(iii) Cnk is a simplex.
(iv) The extreme points of Cnk are the 

Proof - (i) P= where 03BB is the P-law of (ii) It

suffices to show that P1 determines P. By orthogonal invariance, the

characteristic function of P depends only on t tf, say as (p ( t ).

Now the characteristic function of P~ is
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and this determines (p, so P, by Lévy’s uniqueness theorem. That Pk
determines P is the unique lifting property. Claims (iii) and (iv) follow by
general arguments from the unique lifting property. 0

(2 . 12) Remark on sharpness. - The rates in ( 1) and (2) are sharp, but
not the constants. Indeed, let k and n tend to oo, with lim sup k/n  1.

We think we can prove is minimized, at least

asymptotically, when u is point mass at 1. Now

Here, and

k

with Z a standard normal. Inf ormally, ~ ~2 is n. beta [k/2, (n - k)/2] which

is asymptotically normal with mean k and variance nearly 2 k 12014- );

while 03A303B62i is xfl which is about N (k, 2 k). Multiplying a centered normal
i

variable by 1- 9 changes the distribution by (p(0) in variation distance,
and cp (6) ,: y8 for small 8. Details are omitted, but see the next remark.

(2.13) A more general result. - We belive that we have proved the result
in (2. 12) for a fairly broad class of exponential families, including eg scale
mixtures of gammas with fixed shape, or shape mixtures of gammas with
fixed scale. We require uniformly bounded standardized fourth moment
and some smoothness in the carrier measure, in order to get uniform
bounds like (1) or (2). See Diaconis and Freedman (1986). More specifi-
cally, let I be an open interval (a, b), possibly infinite. Let h >_ 0 on I be
locally integrable. Let A = ( a, fl) be open, and for we have the

exponential with density 
’

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let mx be the mean of P~, and a~ the variance, and ~r~ the characteristic
function. As usual, mx is continuous and strictly increasing. We assume

(i) A is maximal, in the sense that mx - a as 03BB ~ a while b as

03BB ~ 03B2.

Let ..., X n be iid P~. Then S =X + ... + Xn is sufficient for À.
Let Q~~ be the usual version of the regular conditional distribution for
Xl, ..., Xn given S = s. Let Let chosen so = s/n.
Let n and 

These estimates are uniform in s with Dropping the uniformity
conditions, the estimates still hold provided ~,* is fixed in I and s/n --~ 
but the error depends on ~,*. Under such conditions, we can also prove
the following.

(c) Suppose 8 with 0  6  1. Fix ~,* E I; for each n, choose s as

s/n = Then ~ Qnsk - P k~~~Qnsk- Pk03BB*~ + o ( 1 ).
The idea of the proof for e. g. (a) is this: let fk , 1 be the P03BB-density of

X~ + ... +Xk. Then the norm in (a) is

(s - t)/fn, ~* (s) can be estimated by Edgeworth. For k = o (n) this
turns out, to a good approximation, to be

For (C), let p, = lfk ’ x y (dX) be the P -density of X1 + ... Let Q be

the Qnsk-law °f X i + ... + Xk, with density q. Let f= fk, x*. Then



408 P. DIACONIS AND D. FREEDMAN

Choose for K the interval

essentially where Q > P~. The first integral is c~ ( 8) + o{ 1 ) . The second is

positive, up to o { 1): only point masses need be considered for ~,. We have

a similar bound for k = o (n).
These estimates apply to the normal and exponential distributions.

They do not apply fully to the geometric or Poisson cases, because the
standardized fourth moments blow up near zero. However, the estimates

do apply locally, and demonstrate the sharpness of the k/n rate.

3. THE EXPONENTIAL CASE

The main result of this section shows that the uniform distribution on
a simplex has approximately independent exponential coordinates. Some
of the reasoning in the previous section will be useful in this connection
and can be abstracted as a lemma. This is a more direct version of

(Diaconis and Freedman, 1980, p. 757).

(3.1) LEMMA:

Then cp (4) = o, cp is strictly

decreasing, strictly concave, and cp (N - ) = - r.
(b) For 0  x  l, let f(x) = -(I-x) log (l-x)-x. Then f(O)=O, f is

strictly decreasing, strictly concave, and f ( 1- ) _ -1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof - Claims (a) and (b) are elementary; (c) and (d) follow. Claim
(e) is elementary. For the log of the left side is bounded above by

The log of the right side is bounded below by

The expression in ( 3 . 2) is smaller than that in ( 3 . 3), by Jensen’s inequa-
lity. 0
We are now ready to state and prove the analog of inequality ( 1) for

the uniform. Let P~ be the law of ~ 1, ... , ~~ which are iid exponentials
with parameter ~,, so P~ ~ ~L > y ~ = e -’~ y. Given § 1 + ... + ~n = s, the ~’s are
conditionally uniform on the simplex. Let Qnsk be the law of ~1, ... , ~k

where ~ _ ( ~ 1, ..., ~k, ~k + 1, ... , ~n) is uniform on the simplex ~i >__ 0 for

all f = -s ~ ~ The next result shows that is nearly Pn~~, provided
i J

k = o (n). Informally, this is because ~1 + ... + ~n is practically constant,
so the conditioning is immaterial.

Proof - It suffices to do the case s = n. The sum is sufficient so lemma
(2.4) applies, and
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where Q is the Q"sk law of §1 + ... + 03BEk and P is the P’1law of 03B61 + ... + 03B6k.
We realize Q as the law of ..., n where S = ~ 1 + ... + ~n and
the ç’s are iid standard exponentials. So, Q is the law of

i. e., n times a beta ( k, n - k~ variable, with density

On the other hand, P is gamma, with density

As before

and we must estimate f/g = A h, where

We claim

Indeed, the log of the left side is

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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by lemma (3.1). The upper bound is maximized at x = k + 1 where it

vanishes, proving ( 3 . 7). Then ( 3 . 6) proves the theorem. 0

(3.8) Remark. - The rate but not the constant is sharp. Lemma (2.4)
is only to avoid tedious calculation, since the Qnsk density is

where t = x 1 + ... + xk _ s and all 

(3.9) Remark. - Heuristic versions of (3.4) are known: The uniform
distribution on the simplex can be represented as the joint law of the
spacings of n - 1 points dropped at random into the unit interval, and the
spacings are approximately independent exponentials for many purposes.
See Feller ( 1971, p. 74) or Diaconis and Efron (1986) for further discus-
sion. Rigorous versions and applications are given by LeCam ( 1958), Pyke
(1965), and Holst (1979).

(3.10) de Finetti’s Theorem. - Let R+=[0, oo); Let ..., Xn be the
coordinate variables on R + and S = X 1 + ... + Xn. Let Cn be the class of
probabilities on R + which share with the iid exponentials the property
that given S = s, the conditional joint distribution of X ~, ... , Xn is uniform
on the simplex. If P is a probability on R~, let Pn be the P-law of the
first n coordinates. The infinite form of de Finetti’s theorem asserts that

if a probability P on R ~ has Cn for every n, then P is a unique scale
mixture of iid exponential variables. The infinite theorem follows from the
finite version, which is given in the next remark.

(3.11) Finite de Finetti. - Recall Cn from (3. 10). Clearly, P~ E Cn; so is

P~~ = for any probability ~. on [0, oo). If i. e., P is

conditionally uniform give the sum, then there is a y such that for all

k_n-2,

In other words, if n nonnegative random variables are conditionally uni-
form on the simplex given their sum, the first k = o (n) are to within about
2 k/n a scale mixture of iid exponentials. As in the normal case, the k/n
rate is sharp, but not the constant 2.

(3.12) Another characterization of Cn. - With previous notation P E Cn
iff P(A) = P(A + x) for all Borel sets A and all n-tuples of real
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n

numbers With £ Xi = 0, provided A c R + and A + x c R + . In one direction,
i

suppose PECn. Then P= so it is enough to prove that

Q (A) = Q (A + x), where Q stands for Qnsn, the uniform distribution on
the simplex. But and are congruent, and
hence of equal Lebesgue measure. In the other direction, suppose

P(A) =P(A +x). Let VS be a regular conditional distribution for P given
S = s, so for PS -1-almost all s. For any particular B and x,

as one sees by integrating over S > s: take A = B n { S > s}. The invariance
must hold for e. g. all spheres B with rational center and radius, and all
rational x, forcing V~ to be Lebesgue measure on ~ S = s ~. 0
Some lemmas on the beta will be developed in order to prove the unique

lifting property.

(3. 13) LEMMA. - If X is beta (p, q) and independently Y is beta (p + q,
r) then XY is beta (p, q + r).

Proof. - Let U, V, W be independent gamma variables with parameters
p, q, r respectively. Then U/(U + V) is beta (p, q) independently of U + V
which is gamma (p + q), so the trivial identity

proves the lemma. 0

(3 .14) COROLLARY. - If X has a beta distribution, then log X is infinitely
divisible.

Proof - If X is beta (p, q), then e. g. X can be represented as beta (p,
q-E). beta E). O

(3.15) COROLLARY. - If X is beta with given parameters, and Y ~ o is

independent of X, then the law of XY determines the law of Y.

Proof - By (3.14), the characteristic function of log X never vani-
shes. 0

(3. 16) Remark on unique lifting. - The analog of (2. 11) holds in this
context too. As before, let Cn be the convex set of all probabilities on the
positive orthant of R~’ which are conditionally uniform given the sums of

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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the coordinate variables X 1... Xn. Let _ ~ Pk : P E i. e., ~c E Cnk iff
1t=Pk is the P-law of X 1... Xk for some PECn. Now

so

and it is enough to compute À from Px. To avoid trivialites, suppose
1 _ k  n - 2. The critical case is k =1, and it is enough to compute À from
Pl. Now is s. beta (1, n -1). So Pl is the law of SX, where S and X
are independent, S has the law À, and X is beta (1, n -1 ). Finally, P~
determines X by ( 3 .15) .
Another argument for unique lifting starts from the characterization

(3.12) of Cn. Take with yi >_ o; take

The upshot is that for PECn,

and Pi determines P.

4. THE GEOMETRIC CASE

Let Pp be law of 03B61...03B6n, which are iid geometric variables with para-
meter p, so Pnp{03B6i=j} _ ( 1- p) p’ 1, ... Given §1 + ... +03B6n = s,
the ç’s are uniform on the simplex. Let be the law of ~~ ... ~k where
~=(~1, ... , ~ ~k + 1 ~ ~ ... ~") is uniform on the simplex

The analog of ( 1) is the following theorem.
(4.1) THEOREM. - Let p = s/(n + s). For 1 c k _ n - 3,
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Proof - Here scaling is not feasible, so all values of s must be

considered. Let t = j 1 + ... + jk. Clearly,

By the "stars and bars" lemma ( Feller, 1968, sec. II . S), there are

of nonnegative integers with sum s. Then for

t=j1 + ... +jk~s,

Dividing (4. 3) by (4. 2), the ratio Q,~Sk (j 1, ~ ~ ~ , jk)lPp (j 1, ~ ~ . , jk) is seen to
equal

This is N/D, where

Now by Lemma ( 3 . 1 .f ) ~ The balance of the

argument is omitted. 0

(4. 5) Remark. - The usual remark on sharpness of rates is omitted.

(4. 6). Remark. - In physics, the conditional distribution of iid geometric
variables given their sum (viz, the uniform on the simplex) is referred to

as "Bose-Einstein"; the conditional distribution of iid Poissons given their
sum (the multinomial) is "Maxwell-Boltzman". See Feller ( 1968, pp. 40 ff).

(4 . 7) de Finetti’s theorem. - Let Z + denote the nonnegative integers.
Let Xi, ..., Xn be the coordinate variables on Z + and S = X 1 + ... + X".
Let C" be the class of probabilities P on Z + which share with the iid
geometrics the property that given S = s, the conditional joint distribution
o~ ~ 1 ~ ~ ~ ~ ~ Xn is Qnsn, the uniform on the simplex. If P is a probability

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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on Z+, let Pn be the law of the first n coordinates. The infinite form of de
Finetti’s theorem asserts that if a probability P on Z+ has Pn E C" for
every n, then P is a unique mixture of iid geometric variables. The infinite
theorem follows from the finite version, given in the next remark.

(4 . 8) Finite de Finetti. - Clearly, P’p E C"; and so is = Pp ~, (dp ) for
any probability ~, on [o, 1]. If P E C", there is such that for k _ n - 3,

In other words, if n nonnegative integer-valued random variables are
conditionally uniform on the simplex given their sum, the first k = o (n)
are to within about 2 k/n a mixture of iid geometrics. The rate is sharp,
but not the constant.

(4. 9) Another characterization of Cn. - With previous notation, PG Cn
iff P ( A) = P ( A + x) for all sets A and all n-tuples x = x 1 + ... + xn of

n

integers provided A c Z + and A + x c Z + . By A + x, of
i

course, we mean {a+x: aEA}. The proof is omitted as elementary.
(4.10) Unique lifting. - Continue with the notation of (4 . 7). Let 
Then P~, the P-law of Xi, ..., Xk, determines P. To avoid trivialities,
suppose n >_ 2 and k =1. Let ~, be the Pn-law of S. The problem is to

compute À from Pl, But

forj=0, 1, ... By taking successive differences n -1 times, one recovers

03BB(s)/(n+s-1 s) and hence 03BB(s). A less-algebraic proof starts from (4 . 9).
5. THE POISSON CASE

Let P~ be the law of ~ 1... ~n which are iid Poisson variables with
parameter ~,. Given S = ~ 1-~ ... + ~~ = s, the ç’s are multinomial. Let Qnsk
be the law ... , ~k given S - s,
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(5.1) 

Proof - By sufficiency, where Q is binomial with
s trials and success probability k/n, while P is Poisson with parameter
ks/n. Now appeal to Kersten ( 1963). 0
(5 . 2) Finite de Finetti. - Let Z + denote the nonnegative integers; let

X 1... X" be the coordinate function on Z +, and S = X 1 + ... + Xn. Then
PECn iff Qnsn is the P-law of Xi, ..., Xn given S = s. Clearly, and

so is P~n = for any probability ~ on [0, oo). If PE Cn, there is a

such that for k  I n,
2

In other words, if n nonnegative integer-valued random variables are

conditionally multinomial (n, s/n, ... , sin) given their sum, the first

k = o (n) are to within about k/n a mixture of iid Poissons. The rate is

sharp but not the constant.

(5. 3) Unique lifting. - Let P E Cn. Then Pk, the P-law of Xl, ..., Xk,
determines P. To avoid trivialities, suppose n >_ 2 and k =1. Let 03BB be the

P-law of S. The problem is to compute À from Pl, But

Let

and

with radius of convergence n/n -1. Clearly,

and since cp is analytic on the disk {x: I x (  n/n -1 ~ it is determined by its
derivatives at 1.

(5. 4) More on unique lifting. - We consider (4. lo) and (5. 3) a bit more
generally. Let M (i, j) be an infinite stochastic matrix with entries which
are positive for j _ i and vanish for j> i, i. e., M is a lower triangular
matrix on the nonnegative integers Z + . Let 03BB be a probability distribution
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on Z+. In essence, the unique lifting property is that X M determines ~,,
for certain M. More specifically, let X 1, ..., Xn be the coordinate process
on Z"+. Let M ( i, . ) be the law of X 1 when X 1 +... --X~ is uniformly
distributed on the simplex {X 1 + ... + X n = i~, that is, M (i, . ) is the Q;i
corresponding to the geometric. Then X M determines À. by ( 4 . 10) . Like-
wise for the M corresponding to the multinomial, by (5.3). For general
M, a formal inverse always exists. Indeed, let Mn be the upper n x n
submatrix of M: then Mn+ 1= Mn 1 when it can. However, M is not

necessarily 1-1. The counterexample M, with domain the positive integers,
is

Algebraically, for i = 3, 5, 7, ...

For f=4, 6, 8, ...
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Let

Let

Then ~, M = ~,’ M.

6. HISTORY

1. Poincare, Borel, and Maxwell

The asymptotic normality of the first k coordinates of a random point
on the n-sphere is a theorem usually attributed to Poincare (1912): see

e. g. McKean (1973, p. 197), Letac (1981, p. 412), or Billingsley (1979,
p. 342). However, after a diligent search, we were unable to find the result
in Poincare. The closest we came was a brief mention of statistical mech-

anics at p. 43, and Liouville’s theorem at pp. 145 ff.

The earliest reference to the theorem we could find in the probability
literature was Borel (1914, Chapter V). In equation (12) on p. 66, Borel
gives a sharp statement of the theorem for k = 1. On pp. 90-93, he makes
the connection with the kinetic theory of gas. (We continue with our
notation, rather than switching to his.) Consider m particles, each with 3
velocity coordinates, all denoted x 1, ..., xn, with n = 3 m. Each particle
has the same mass, to be denoted by c. The system is constrained to lie

on the surface of constant kinetic energy, - c 03A3 xf = h . A uniform distri-
2 î=l

bution on this energy surface is assumed (Liouville’s theorem is the usual
-but partial -justification). Now xi tends in distribution to N (0, 2 
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as n -+ oo, uniformly in h and c. Borel asserts asymptoic independence
and normality for x 1, ..., provided n - k ~ oo . This may be true in
some sense, but for variation distance k = o (n) is required.

Borel was aiming for "the usual form of Maxwell’s theorem", that the
empirical distribution of x 1, ..., xn tends to normal. From a modern

perspective, this is quite easy. If Zi, ..., Z~ are iid N (0,1) variables,
then their empirical distribution tends to N (0,1). So must the empirical

2 1 ’ n 2distribution of Z1/R", ..., Zn/Rn, where R2n=1 n03A3 Zf - 1 a. e. One refer-
ence of historical interest is Maxwell (1875, p. 309); a second, Maxwell
[1878, eqn (49-55)], is more technical and focused on the law of the

individual x’s.

The application to kinetic theory is an example of what mathematical
physicists now call the equivalence ofensembles. If H (x) is the Hamiltonian,
one can work with the "microcanonical distribution", the uniform distribu-
tion on {x: H (x) = h2~. Alternatively, one can work with the Gibb’s distri-
bution G(dx) on Rn. This is a probability whose density is proportional

The constant c is chosen so H (x) G (dx) = h2. The equivalence
of ensembles obtains when

for some wide class of f unctions g, and for some well-specified meanning
of the approximate equality.

To get Borel’s example, take H x =1 c x2 + ... + x2 Theorem (1)

gives the equivalence of ensembles as n tends to infinity, for the g’s
depending on o (n) coordinates. Physicists tend to assume that the equiva-
lence always holds, although currently there is a move towards rigor. The
leading researchers are Dobrushin, Lanford, and Ruelle. A convenient
reference is Ruelle (1978, Chapter 1).

2. Paul Levy

Levy made extensive use of versions of theorem (1) for k finite in
discussing means on function spaces. The material is first presented in
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Chapter III of Levy (1922). This is reprinted without essential change in
Levy ( 1951). Also see McKean ( 1973) who describes Brownian motion as
"the uniform distribution on the sphere of radius 
We will attempt here to sketch the connection to theorem (1). Levy’s

idea was to define the mean value M of U as the expected value of U 
where U is a functional, and f is chosen at random on the unit sphere of
LZ [o,1]. This is clearly insane, because there is no rotationally invariant
countably additive probability on that sphere. Nothing daunted, Levy
defines M (U) for certain U by a limiting process. Following Gateaux

1919 he discretizcs 0 1 as p 1 ( 1 2 .. f n-1 n, n] and con-

siders the approximation fn to f obtained by averaging f over these

intervals. So fn is constant on each interval. Let ai, ... , a,~ be the values

of fn on the n intervals. Now Mn(U) is defined as E{U{fn)}, when fn is

chosen at random on the = I, i. e., f n (t) dt = 1. If
~0

M~ (U) converges oo, the limit is declared to be M (U). For example,

suppose at least formally that U(/)=p /t - ) where p is a real-valued

function. Then MJU)==p fn(1 2)], whose expectation by ( 1) tends to

Similar things can be be done if U depends on f at o (n) coordinates.

3. de Finetti

The original theorem (de Finetti, 1931) states that an exchangeable
process of 0’s and l’s is a unique mixture of coin-tossing processes. The
move from ~0,1 ~ to a compact Hausdorff space is due to Hewitt and

Savage (1955), which also gives some history. The result is false for

abstract spaces (Dubins and Freedman, 1979).
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4. Recent literature on Poincare’s theorem

Stam (1982) proved a version of theorem (1) with an error bound in
variation distance, assuming k = o ( /). He gives some interesting applica-
tions to geometrical probability theory. Gallardo (1983) and Yor (1985)
gave an argument (with k fixed) using Brownian motion in n dimensions.
Freedman and Lane ( 1980, Lemmas 1 and 2) showed how to derive the

convergence of an empirical distribution of dependent random variables
("the usual form of Maxwell’s theorem") from information on the limiting
behavior of pairwise joint distributions. Indeed, in the general setup of
(2.13), suppose Then the empirical distribution of xi, ..., xn
converges weakly in Qsns-probability to P03BB. This is because Qnsn is exhange-
able, and P203BB by (2.13).

5. Recent literature on de Finetti’s theorem

The infinite representation theorems were discussed in Freedman ( 1962,
1963), who gave characterizations for mixtures of the various exponential
families. Diaconis and Freedman ( 1980) gave a finite form of de Finetti’s
theorem for 0 -1 variables, with an error bound. The present note is a
sequel, carrying out the analysis in four additional families of distributions.
Zaman (1986) has results for Markov chains. See Eaton (1981) on the
normal case, and Diaconis-Eaton-Lauritzen ( 1986) for vector-valued ran-
dom variables. Partial exchangeability is discussed from various perspecti-
ves in Diaconis and Freedman (1984), Aldous (1985), Lauritzen (1984),
Ressell ( 1985). Finite versions of these results do not seem to be available
in any degree of generality. Local central limit theorems are relevant, as
in Martin-Lof ( 1970); or conditioned limit theorems, as in Csiszar (1984)
and Zabell ( 1980).

6. Corrections

We would like to correct some errors in Diaconis and Freedman ( 1980).
On p. 757, in equation (36) replace o (k/n) by o (k/n). In that equation
and (41), assume k - oo, although the argument does give a result for
k = 4 ( 1 ). On p. 764, in the last remark, the urn is to contain rn =1 red
balls and bn =n-1 black balls. Let H be the hypergeometric distribution



422 P. DIACONIS AND D. FREEDMAN

for the number of red balls in k draws made at random without replace-
ment from this urn. Let Bp be the binomial distribution with k trials and
success probability p. Then The minimal value for

is essentially k 2 /n2, for
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