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Statistical Implications of Finitely
Additive Probability

JOSEPH B. KADANE, MARK J. SCHERVISH,
AND TEDDY SEIDENFELD

I. INTRODUCTION

In his classic monograph on the foundations of the theory of pro-
bability, Kolmogorov (1956) introduces a postulate [P6], equivalent
to the principle of countable additivity, which he justifies as a mathe-
matical expedient for infinite probability structures. Countable addi-
tivity requires that the denumerable union of pairwise disjoint events
has probability equal to the sum of the individual probabilities, i.e.
if A=UZid; (A;nA;j=0,i=#j),then P(A) = 221P(A;). His theory
less P6 is hereafter described as the theory of finitely additive
probability.

Our dispute with Kolmogorov’s characterization of countable
additivity as an “expedient” does not stem from the fear of non-
measurability arising in routine problems of statistical inference. For
our purposes it is enough that probability be defined over a o-field. The
questions we ask are:

1. Does countable . additivity build in unexpected statistical
consequences?

2. Does Bayesian statistics mandate the added restrictions countable
additivity imposes?

We thank Morris DeGroot, Isaac Levi and Herman Rubin for their suggestions and
criticisms.

Reprinted from Bayesian Inference and Decision Techniques (Amsterdam: Elsevier
Science Publishers, 1986), pp. 59-76, with permission of the Editors, Prem K. Goel and
Arnold Zellner.
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We argue that the answers are yes and no (respectively).

Without countable additivity, finitely additive probability undergoes
a failure of “conglomerability” (discussed in section 11). Without con-
glomerability, familiar decision theoretic principles, e.g. admissibility
(discussed in section mr) and other forms of dominance rules (discussed
in section 1v) are invalid. What reason is there for taking seriously the
finitely additive theory if dropping countable additivity undermines
what has become accustomed statistical decision theory?

First, if one adopts the standards of coherence defended by deFinetti
(1974), Savage (1974), and Lindley (1981), one’s beliefs are modeled
by a probability that is finitely but not necessarily countably additive.
(See Seidenfeld and Schervish, 1983, for discussion of this View.)
Second, as we investigate in section v, there are important connections
between finite additivity and Bayesian reconstructions of standard
(orthodox) statistical inference — reconstructions using “improper”
priors in the fashion of Jeffreys (1961) and Lindley (1970). By inter-
preting improper distributions as finitely and not countably additive
probabilities, the way is paved to resolve a host of anomalies thought
by some to be evidence of inconsistency in Bayesian theory. In this
we agree with Heath and Sudderth (1978), Hill (1980), and Levi
(1980).

II. NON-CONGLOMERABILITY OF MERELY FINITELY
ADDITIVE PROBABILITY

Define P to be conglomerable in n (see deFinetti, 1972, p. 99) when for
every event £ such that P(E|h,) is defined for all i, and for all constants
ky, ks, if ky < P(E lh;)) < k, for all h; € x, then ki< P(E) < k,. That is
to say, conglomerability asserts that, for each event E, if all the condi-
tional probabilities over a partition 7 are bounded by two quantities,
k, and k,, then the unconditional probability for that event is like-
wise bounded by these two quantities. DeFinetti draws attention to
non-conglomerability of finitely additive probability in denumerable
partitions.

Example 2.1 (due to P. Lévy, 1930: see deFinetti, 1972, p. 102). Let P(-)
be a finitely additive probability defined over the field of all subsets
of the denumerable set of points {(j, JY:1,j are positive integers). Thus,
one may think of P(-) defined over subsets of integer coordinate points
(i, j) in the first quadrant. Constrain P(*) so that for any point (i, j),
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P((, j)) = 0. Hence, P(') is not countably additive. Also, for any pair
(i, ), let P((i, )!B) = 0 if B is an infinite set. Hence, conditional on an
infinite set B, P(-|B) is again not countably additive.

Now, using the finitely additive probability P(-) (given above), we
see that conglomerability must fail with respect to the event A = {(i, j):
j 2 i}. That is, let A be the region whose lower boundary is the diago-
nal “i = j”. Consider the partition 7, = {h: h; = {(i, j): j < 0} and i < ©}.
That is, 7; is the partition into “vertical” sections. Since, for each i < @,
h;is an infinite set, P(Alh;) =1 (since there are only finitely many points
below the point (i, i), for each i < ). Let m, = {h}: hj= {{i, j): i <} and
j < @}. That is, m, is the partition into “horizontal” sections. Since, for
each j < w, k] is an infinite set, P(A|h;)) = 0 (since there are only finitely
many points to the left of the point (j, j), for each j < w). Thus, con-
glomerability must fail for at least one of m, m, as P(A) must differ
from at least one of the two values 0, 1.

In an earlier paper (Schervish, Seidenfeld and Kadane, 1984), we
investigate several general questions about the existence and magni-
tude of failures of deFinetti’s conglomerability principle. Using a result
due to Dubins (1975) (that conglomerability in a partition is equiva-
lent to “disintegrability” in that partition), we provide least upper
bounds on the failures of conglomerability with respect to denumer-
able partitions. We also show that for finitely additive probabilities,
non-conglomerability in denumerable partitions characterizes those

which fail to be countably additive, confirming a statement of deFinetti
(1972, p. 99).

III. ADMISSIBILITY

Non-conglomerability of finitely additive probabilities, i.e. the phe-
nomenon that an unconditional probability may lie outside the range
of values of conditional probabilities over an exhaustive partition,
quickly leads to a violation of a familiar decision-theoretic principle,
admissibility.

Let O, and O, be two options in a decision and let 7 be a parti-
tion into states (independent of the options) such that for each
state the same option, say O, is strictly preferred to the other
option, O,. Then O, is inadmissible, i.e. O, is strictly preferred to O,
unconditionally.

However, if we consider a choice between O;: bet on the event A
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(as defined in Example 2.1) at even odds, and O, bet on the comple-
mentary event A at even odds, then for each A, e m, O, is strictly pre-
ferred (in expectation) to O, while for each hi € m, O, is strictly
preferred (in expectation) to O,. It cannot be both that O, is strictly
preferred to O, and that O, is strictly preferred to O,. Therefore, fail-
ures of conglomerability entail failures of admissibility. This observa-
tion permits a simplification of Arrow’s (1972) axiom system for
preferences which include both a principle of Monotone Continuity
(Villegas, 1964) and an admissibility rule, called Dominance. Since the
Dominance principle implies countable additivity, Monotone Continu-
ity is redundant.

The fundamental property of admissible procedures, namely that
they alone are Bayesian procedures or limits of them, fails for finitely
additive probabilities. There are reasonable acts, Bayesian with respect
to a finitely additive opinion, which are inadmissible.

Historically, admissibility took on its greatest importance for
statistics when Stein (1955) showed that ¥ is inadmissible as an esti-
mate of the mean u of a normal vector with dimension greater than
two. Stein showed that drawing in the components of X toward an arbi-
trary origin was a strict improvement over Fin the admissibility sense.
Lindley (1962) later showed in a simple Bayesian model in which 7]
itself is considered to be normally distributed with mean Ho, that X
should be drawn toward g, by an amount determined by the prior vari-
ance of u around u, and the sampling variance of ¥ around U.
These observations in turn led to an increased interest in empirical
Bayes methods, using the data to estimate hyperparameters like y,. In
general, the move away from the automatic use of X, occasioned by
Stein’s and Lindley’s work, has been a healthy development for statis-
tics, we think. Statisticians have been encouraged by these results to
consult their prior beliefs more systematically than they had been
before.

A consequence of accepting the coherence of merely finitely addi-
tive options is to reduce the importance of the concept of admissibil-
ity. In particular, there are finitely but not countably additive, prior
distributions for which ¥ is an optimal Bayesian act regardless of the
dimension of X¥. We do not interpret this to mean that now people
should go back to using ¥ (if they ever stopped) without concern for
their prior opinion. Rather, we think that our results re-emphasize the
importance of using your opinion within a Bayesian paradigm that
does not insist on countably additive “priors”.
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IV. COHERENCE AND “STRONG INCONSISTENCY” WITH
FINITELY ADDITIVE PROBABILITY

Associated with a failure of conglomerability are instances of “strong
inconsistencies”, as Stone (1976) calls them. These are colorfully illus-
trated by the following game (Stone, 1981), which is a rewording of
Stone’s (1976) “Flatland” example. :

A regular tetrahedral die is rolled a very large number of times. The
faces of the die are labelled: e* (positron); e~ (electron); y* (muon); and
M~ (antimuon). A record is kept of the outcomes subject to the con-
straint that if complementary events occur successively in the record,
they “annihilate” each other and the record contracts, without trace
of the “annihilation”. Thus, the sequences...e'e”...,...e%€" ...,
oMW ... and...gpt. .., cannot occur in the record. At some
(arbitrary) point in the sequence of rolls the player, who is ignorant of
the outcome to date, calls for one last roll after which he is shown the
final record. He is then asked to gamble on the outcome of the last toss
of the die. _

Consider a finitely additive prior over the countable set S of all pos-
sible states of the record prior to the final toss defined as follows. First
arrange all elements of § into a single sequence, and let B, be the set
consisting of the first # of them. For B c S, let A,(B) = #(B N B,)/n.
Take any limit point of the sequence A, as a prior A. Since every finite
subset of § has zero probability under A, define for any finite set C,
MAIC) = #(A ~ C)/#(C). This set of conditional probabilities is con-

~ sistent in the sense that if A and B are any subsets of §, and C is any

finite subset such that A N C = &, A(BIA N C) M(AIC) = MB n AIC).
If the player is a Bayesian who adopts this prior distribution, then upon
seeing the record he will assign equal probability to the four possible
outcomes compatible with the record. For example, if the record ends
... €', he will assign probability 1/4 to the four possible outcomes of
the final toss. But then the player assigns probability 1/4 to each of the
following four states of the record as it existed immediately before the
final roll of the die:

... ¢ (corresponding to a final toss landing 1),

... e"i'e" (corresponding to a final toss landing €7,

... €"['e” (corresponding to a final toss landing e*) and

... €'y’ (corresponding to a final toss landing w).

Thus, he assigns probability 3/4 to the event that the final toss
resulted in an “annihilation” in the record for the final entry. More-
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over, with the prior described above, the player assigns probability 3/4
to the event “annihilation” in the record for the final entry (call this
event A) for each observation of a non-vacuous record. If he were to
observe a blank record, then for certain the last roll resulted in A.
Hence,

3/4<P(A|x)<1, foreach observation x. (1)

Let us call the state of the record just prior to the final toss, 6, the
parameter. Then, on the assumption that the die is fair,

0<P(A]|6)<1/4, foreach®. (2)

Note that P(AI6) = 0 only when 6 = 6, corresponding to a blank
record just prior to the final toss. P(A16) = 1/4 for all other parameter
states.

If conglomerability applies, then incoherence results as 3/4 < P(A)
by (1) and P(A) < 1/4 by (2). It is trivial to “make book™ in such cir-
cumstances, by betting at, say, 1:3 odds both against and for the event
A. The player who (incoherently) adopts conglomerability is led to
accept these gambles, as shown by the two (inconsistent) inequalities
for P(A). v

What if the player adopts conglomerability in only one of the two
partitions? For instance, Levi (1980, pp. 284-287) requires conglomer-
ability in the ,= {6} partition, as a consequence of his theory of “direct
inference”. It appears that most other writers assume conglomerabil-
ity in this, the margin of the “parameter”. The result is a finitely ad-
ditive distribution which is coherent, in the sense that no finite
collection of bets suffice to “make book”. However, on pain of a sure
loss, the player with such a coherent, finitely additive distribution will
decline the offer of an infinite class of “fajr” bets, where he is agree-
able to every finite subclass of wagers. This is, according to Stone, a
“strong inconsistency”.

For example, let conglomerability apply in 7, = {6,i=0,...}. Then
prior to the game the player has odds of 1:3 on 4 (an “annihilation”
on the final roll),.as P(A) = 1/4 (since P(6) = 0). Prior to the game, the
player also holds the infinite collection of conditional odds, given
x=x(i=0,...),of (at least) 3:1 on A, for each possible observation
x;. But the player will not accept all the denumerably many called-off
bets (called off in case x = x; fails to occur) at the conditional odds of
3:10n A, while also agreeing to wager on A at the unconditional odds
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of 1:3.To do so would expose him to a sure loss, Of course, the player
is willing to accept any finite subset of this infinite set of wagers. No
finite subset is sufficient to fix a sure loss. Hence, the player is coher-
ent in deFinetti’s sense (1974, ch. 3).

A similar argument applies in case the player holds conglomerabil-
ity only in 7, = {x}, the margin of the “observable”. Then P(A) = 3/4.
The requisite infinite class of “fair” gambles is constructed by consid-
ering the conditional odds on the event A, given the state of the record
immediately prior to the final toss (6,). The player is agreeable to each
of the denumerably many called-off bets on A, called-off in case 8= 6,
fails, at odds of 1:3, as P(A16;) < 1/4 (i=0,...). Once again, the player
will not accept all such bets at once. Instances of “strong inconsisten-
cies” are thus not violations of coherence.

Additional cases of “strong inconsistency” (without failure of co-
herence in deFinetti’s sense) can arise when a posterior probability is
calculated by Bayes’ Theorem for densities with an “improper” prior,
subject to the assumption of conglomerability in the margin of the
parameter (the unobserved quantity). Heath and Sudderth (1978) illus-
trate this with their example 5.2. We discuss their theory in the next
section.

V. “IMPROPER” PRIORS, COHERENT POSTERIORS, AND
ATTEMPTS AT CURTAILING NON-CONGLOMERABILITY

The use of improper distributions to represent ignorance has a long
history (see, for example, Jeffreys, 1961 [first edition 1939}, Lindley,
1970 [first edition 1965], and Hartigan, 1964). Improper distributions
are not probabilities because they assign infinite mass to the universal
set, e.g. Lebesgue measure on the real line. An improper distribution
may be translated directly into a set of finitely additive probabilities,
as does Levi (1980, pp. 125-131), who treats improper distributions as
o-finite representations of finitely additive measures. Alternatively, an
improper distribution may arise as a limit of finite measures which can
be normalized to be probabilities (see Renyi, 1955).

The limits of the normalized measures often do not exist, however.
For example, if the universal set is the real numbers, let A, be Lebesgue
measure restricted to the interval [-n, n]. Each A, can be normalized
to i, = (2n)'2, which is a probability. Whereas A, converges to
Lebesgue measure on the entire line, the sequence {1}, does not con-
verge to a countably additive measure. There exist subsequences of
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{1}, however, which converge to finitely additive probabilities. This can
be seen as follows. Each probability u, is a function from a field of
events Finto the interval [0, 1]. The collection of all such functions is
a compact space (in the product topology). Hence, every sequence {u,,}
in this space has a limit point. Since limits preserve finite additivity,
each such limit point g will be a finitely additive probability.

The same reasoning can be applied to any improper prior to produce
a collection of finitely additive probabilities associated with it, as
follows. For each improper prior A there exist finitely additive proba-
bilities u, each of which is a limit point of a sequence of probabilities
{1}, and each p, is A restricted to a set of finite measures and nor-
malized to be a probability. This establishes a connection between
improper priors and finitely additive probabilities.

Having established the connection, we can ask if the inferences
made using improper distributions remain valid in the finitely additive
theory. For example, suppose the distribution of X = (X, ) given
8= (i, o) is that X and S are independent, X has a normal N(u, o*n)
distribution and nS%oc? has a chi-squared distribution with n — 1
degrees of freedom. If we pretend that the improper prior 1/0 is a
density for (1, o), then use of Bayes’ Theorem for densities leads to the
conclusion that the posterior distribution of M given X is such that
(n—1)"*(u— X')/S has a r distribution with 7 — 1 degrees of freedom,
a proper distribution.

In their important paper, Heath and Sudderth (1978) take the fol-
lowing approach to inferences involving improper distributions, They
define the posterior distribution of a parameter 8 given the data X as
the conditional distribution necessary to make the joint distribution of
(X, 6) conglomerable in both the X and 8 margins if such a posterior
distribution exists. That is to say, if the conditional distribution of X
given 6 (i.e. the likelihood) is p(dx16) and the prior for 6is m(d6), then
the marginal for X is m(dx) = fp(dx|6)n(d8) and the posterior g(d6lx),
if it exists, will satisfy

[ 0. 0)q(d6)x)midx) = [ [ o(x,0)p(ax|O)m(d6), 3)

for all bounded measurable ¢. In the above example concerning (4, o),
Heath and Sudderth find a class of measures, to which dA = dudo/o
belongs, which have the property, among others, that there exists a
sequence {B,}=, of sets with 0 < A(B,) < o, and Uz, B, equal to the
space of all (i, o) pairs. They then form the sequence of probabilities
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(") = (- NB,)/ A(B,). Each limit point 7 of this sequence is a distinct
finitely additive prior for (1, 0) which has a “posterior” distribution for _
M given X agreeing with the one obtained above by use of Bayes’
Theorem for densities applied to the improper prior dA.

However, Heath and Sudderth (H-S) use the term “posterior” in an
overly restricted sense, in our opinion. The implication of their de-
finition is that if no such g exists, there is no “posterior”. The work of
Schervish, Seidenfeld and Kadane (1984) shows that under mild con-
ditions, each merely finitely additive probability, even one that satisfies
(3), will have countable partitions (margins) in which it is not con-
glomerable. The requirement that a probability be conglomerable in a
pair of given (albeit uncountable) partitions before admitting the exis-
tence of a posterior is, perhaps, too harsh. After all, the prior #(d6), if
it is merely finitely additive, will not be conglomerable in all countable
partitions which result from coarsening the parameter space. Consider
the following example:

Example 5.1. Assume 0¢ {0,1}, X e {1, 2, 3,...} with a distribution
satisfying p(x!6) = 2°*% and n(6) = L. There are many such finitely ad-
ditive distributions. Each has some probability adherent along the
sequence of (x, 6) values {(n, 1)}, in the sense of deFinetti (1974, p.
240). It follows that the marginal for X is m(x) = (3)2°** and Bayes’
Theorem gives the posterior of € given X to be q(0lx) = (2 - 6)/3 for
all x. Let ¢(x, 0) equal 1 if 8= 1 and zero otherwise. Then

f f ¢(x,0)p(dx| 8)m(d6) = %

and

J o0l xmian =z,
where the integrals are defined as in Dunford and Schwartz (1958). Yet
it is reasonable to claim that g is the posterior for 8 given X once finite
additivity is accepted. This example makes clear the need for a less
restrictive definition of posterior distribution that will allow inference
even when a probability cannot be made conglomerable in a specific
partition.

Another problem with requiring probabilities to be conglomer-
able in a specific partition is illustrated by this example. Schervish,
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Seidenfeld and Kadane (1984) show that there are finitely additive
probabilities on the space of all (x, 6) pairs which assign probability
one to the points {(x, 1)}i1, are conglomerable in the x margin, and
assign zero probability to each individual point. Let P; be such a prob-
ability. There is a countably additive probability P, which assigns prob-
ability 27 to the point (x, 0) for each x. Of course, this probability is
conglomerable in the x margin. But P = IPO + Pl has exactly the form
of the probability described in Example 2.1, where we showed that
P is not conglomerable in the x margin. Hence, the collection of pro-
babilities conglomerable in a specified partition is not closed under
convex combination, and H-S coherence is not preserved under mix-
tures of H-S coherent distributions.

Finitely additive distributions that are coherent in the usual sense
but not H-S coherent reflect “strong inconsistencies” similar to the
anomaly of Stone’s example (section-v). Likewise, coherent but H-S
incoherent distributions fail Robinson’s (1979) criterion that there be
no “super-relevant” betting procedures.

In contrast to H-S coherence, where “posteriors” are free of strong
inconsistency in the two canonical margins (7., and 7,), Levi’s (1980)
theory requires little more than coherence in deFinetti’s sense, and
suggests one view of how to calculate posterior probability with an
“improper” prior. Levi’s (1980, p. 129) analysis supports the familiar
manuever with the Bayes formula if the likelihood function is count-
ably additive.

Whether or not one is prepared to insist on H-S coherence (we are
not), it seems reasonable to investigate “conditional properties” of
coherent distributions. That is, from a Bayesian point of view the dis-
tinction between “absolute” and “conditional” probability is tenuous,
at best. What is the effect of strengthening conglomerability to fix con-
ditional probablhty values?

Conditional Conglomerability

Let F be an event for which P(-| F) is defined, and let 7= {;} be a par-
tition. Let ;s = h; N F, and assume P(-1 k) is defined for all i. Then P
is conditionally conglomerable in 7 with respect to (given) F if for each
E ¢ F, and for all constants k; and k%, such that

k < P(E|h;)S ky, foralli; k <P(E|F)<k,.
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Trivially, if conditional conglomerability with respect to all events is
satisfied in a specified partition, then conglomerability also holds in
that margin. The converse is false, however, as we show using the
example constructed by Buehler and Feddersen (1963), which was a
rebuttal to arguments of Fisher (1956). Thus, H-S coherence admits
distributions which are conditionally H-S incoherent.

Let (xy, x;) be ii.d. N(6, 6), with both parameters “unknown”. It is
obvious that :

Pl < ,u < Xmax| (1, 0))= 0.5, for each pair (i, 02). 4)
Let ¢ = (x; + x,)/(x; — x,). Buehler and Feddersen (1963) show that
Pmin € P S Xoe|(, 02), [ <1.5)>0.518, ®)

for each pair (6, 6?), despite (4).

Moreover, Heath and Sudderth (1978) show there is a class of
finitely additive “prior” probabilities over pairs (1, 6°) such that for
each “prior” conglomerability is satisfied in both partitions x, ., and
0% (Note that each partition has cardinality of the continuum.) Also,
they show that each finitely additive “prior” probability induces a
familiar countably additive “posterior” distribution, where

P(Xmin S 1S Xnax; (11, X2))= 0.5, for each pair (x,, x,). (6)

Now, since ¢ is a function of the (x1, x,) pairs, we can partition the
event il < 1.5 by the set of pairs (x,, x,) for which this inequality holds.
Thus, by conditional conglomerability applied to this partition of
lel < 1.5, (7) is a consequence of (6):

P(Xmin S 1S Xl (| £ 1.5) = 0.5. @)

But, also we may partition the event lfl < 1.5 into the continuum of
states (I < 1.5, i, 0°), so that with conditional conglomerability applied
to this partition of lfl < 1.5, (8) is a consequence of (5):

P(Xmin S U< X | £1.5) > 0.518. (8)

- At least one of (7) and (8) must fail, hence conditional conglomer-
ability fails in at least one partition where conglomerability holds (see
Seidenfeld, 1979).

The failure of conditional conglomerability in a partition that admits

221



conglomerability is restricted to events that have zero probability. We
show this as follows. Let P(F) # 0, and argue that

P(F|6)dP®)
P(F)

- P(ENF|0)dP(®)

e P(F)

= P(ENF)/ P(F)

= P(E|F),

_[QP(EIF, 6)IP(O|F) = LP(EIF, 9)

where the first equality is by conglomerability in 7z, and Bayes’
Theorem, the second and fourth equalities are by the multiplication
theorem for conditional probability, and the third equality is again by
conglomerability in 7,. Hence, in the Fisher-Buehler-Feddersen prob-
lem, it must be that P(ld < 1.5) = 0.

Examples such as the Fisher-Buehler-Feddersen paradox, where
conditional conglomerability fails in a margin for which conglomer-
ability holds, illustrate the violation of Robinson’s (1979) criterion that
there be no “relevant” betting procedures. Thus, H-S coherence is in-
sufficient to preclude “relevant” betting schemes, in Robinson’s sense.
Also, subject to conditional conglomerability, advantage may switch
repeatedly between two gamblers by an iteration of who has last say
in determining when a bet is “on”. This is illustrated by Fraser’s (1977)
“balanced procedure”.

In contrast to the anomaly of “strong inconsistency” that is a con-
sequence of non-conglomerability, we can identify a “weak inconsis-
tency” of finitely additive distributions that arises from failure of a
simple dominance (admissibility) rule even where conglomerability
applies. Consider the choice between “no-bet” and a gamble that pays
off 1/i if 6, occurs (i=1, .. .). Clearly, for each value of 8 the gamble is
strictly preferred to “no-bet”. However, if one imposes a merely finitely
additive probability distribution over 6, such that P(6) = 0 (all i),
E(no-bet) = E(gamble) = 0. That is, one becomes indifferent between
the two options even though simple dominance obtains.

We can express this failure of dominance as a violation of a strength-
ened version of conglomerability. That is, “weak inconsistency” results
from violating the following:

If there exists a constant k, such that P(E|;)= k for all i,
then P(E)= k. 9)
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In terms of the above example, if P(E|16;) = 1/i and we receive $1 if
E occurs when we choose to gamble, then for each 6; we gain (in expec-
tation) 1/ if 6; occurs. However, though P(E16) > 0 (all §), P(E) = 0
under the merely finitely additive prior described above, in violation
of (9).

A somewhat different example is as follows. Let x ~ N(u, 1).
As Heath and Sudderth (1978) show, suitably invariant “priors” over
p exist for which conglomerability is satisfied simultaneously in T,
and 7, and where (for each x) P(ulx) is N(x, 1). Hence, for each x,
P(x < pix) = 0.5. Assume that the prior chosen assigns positive proba-
bility to {x: x < 0}= X~, i.e. P(X") # 0. (We make this assumption to
avoid unnecessary questlons about probability conditional upon an
event of zero probability.) Since we know conglomerability holds in 7,
(and since P(X") # 0) we have that P(x < ulX") = 0.5. However, we
note that, for each y, P(x < pulX~, u) > 0.5. (In fact, P(x < ul X~ ) =1
for all g > 0.) Thus, P(-|X") fails (9) in x,, though conditional con-
glomerability, given X", holds. -

Finally, we come to those “marginalization paradoxes” involving the
transformation of continuous random variables. These include all but
the first of those of Dawid, Stone and Zidek (1973) and Stone and

‘Dawid (1972). Here, by transformation, e.g. changing from N(u, 0') to

(7, 0), where 7= u/o, we create the situation that:

i. P(zlx) = P(7lt);for ¢ a function of x = {x,, ..., x,}, x; ~ N(1, 0);
ii. P(tl(u, 0)) = P(t17), i.e. t depends solely on T;
iii. conglomerability holds simultaneously in Tuo) and 7;
iv. yet the probability density p(zi7) [from (ii)] does not factor the
density P(zlf) [from (i)] as a function of 7.

As is argued by Seidenfeld (1981) and Sudderth (1980), no violation
of conglomerability is present here. Only (9) is violated. But we saw
above that (9) can fail in partitions where conglomerability holds.
Where conditional conglomerability obtains, but (9) does not, we are
faced with betting schemes that violate Robinson’s (1979) criterion of
“semi-relevance”, though satisfying his requirement that there be no
“super-relevant” or “relevant” betting policies.

In conclusion, we have noted several strengthened versions of
conglomerability and have described statistical anomalies that reflect
violation of each. Since each coherent finitely additive distribution
must fail conglomerability in some denumerable partition (unless the
distribution is countably additive), our reaction to these anomalies is
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to see them as further evidence that the attempt to modulate non-
conglomerability (as in Robinson’s criteria prohibiting betting schemes
with “super-relevant” or “relevant” selections) is misguided. If con-
glomerability is necessary for “consistency”, then nothing less than
countably additive distributions suffice with denumerable partitions,
and even “proper” priors may suffer non-conglomerability in non-
denumerable partition, as we discuss in the next section.

VI. COUNTABLE ADDITIVITY AND NON-CONGLOMERABILITY
IN NON-DENUMERABLE PARTITIONS

Since non-conglomerability in denumerable partitions characterizes
merely finitely additive probability, it is a mistake to advocate
both a finitely additive theory of probability and standards of coher-
ence entailing dominance or disintegrability in particular partitions
(margins). One may cite non-conglomerability as reason enough to
reinstate countable additivity. Non-conglomerability may be too high
a price to pay for the convenience of “uniform” distributions.

However, Example 6.1 shows that non-conglomerability, which is
characteristic of merely finitely additive probability in denumerable
partitions, can occur with countably additive measures in non-
denumerable partitions.

Example 6.1. Suppose X; and X, are independent standard normal
random variables except that X, =0 is impossible (this does not change
the joint distribution function). Since X; and X, are independent, the
distribution of X, given A = {X; = 0} is standard normal. Using the usual
transformation of variables technique, the conditional distribution of
X, given B = {X/X, = 0} is that of (-1)"Z, where P[Y = 1] = P[Y = 2]
=3, Z has chi-squared distribution with two degrees of freedom, and
Y and Z are independent. The two events A and B are identical,
however. -

The fact that the conditional distribution of X, given A differs from
“that given B is an example of the well-known Borel paradox (Kol-
mogorov, 1956). This paradox was also discussed by Hill (1980, p. 44).
The seeming contradiction is often resolved by claiming that the trans-
formation of variables only yields conditional probability given the
sigma field of events determined by the random variable X,/X,, not
given individual events in the sigma field. This approach is unaccept-
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able from the point of view of the statistician who, when given the
information that A = B has occurred, must determine the conditional
distribution of X;. A more reasonable approach is to consider the
theory of conditional probability spaces as defined by Dubins (1975),
among others. In such a theory P[X, € EIA] means the conditional
probability that X; is in the set E given the event A and is not relative
to a sigma field. This, then, is the meaning of conditional probability
one assumes when one conditions on the occurrence of a particular
event. :

To conclude Example 6.1, suppose one must determine conditional
probabilities given all events of the form A,, = {X; — cX, = a}. The dis-
tribution of X, given A,. can be calculated from the transformation of
variables technique, if one wishes, as

Normal N ( 1 )
1+c¢?'14¢?

In particular, if a = 0 the distribution of X; is normal with mean zero
and variance (1 + ¢*)'. Consider the uncountable partition of the
sample space via the events {4y |c a real number} = 6. Let ® denote
the standard normal distribution function and E = {X;>1, X; #0}.Then
PIE|Ao] =1 - ®((1 + A <1 - &(1) = P(E), for all c. Hence, P is
not conglomerable in the partition 6. Theorem A1 in the Appendix
shows that non-conglomerability in uncountable margins is quite
common for countably additive probabilities with continuous distribu-
tions, just as non-conglomerability in countable margins is quite
common for merely finitely additive probabilities. In fact, the theorem
implies that no matter how one defines conditional probability given
A, in the above example, conglomerability will fail in some partition.

Hence, it appears that finite additivity cannot be rejected merely on
the grounds that it allows failures of conglomerability, unless countable
additivity is also to be rejected. Since few, if any, statisticians are willing
to reject countable additivity, we suggest that finite additivity be judged
on issues other than conglomerability.

VII. CONCLUSION

What attitude does our research lead us to with respect to finite addi-
tivity? We are comforted to know that various seeming paradoxes
in statistical theory are understood once the lack of conglomerabil-
ity of merely finitely additive probabilities is accounted for. Thus,
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marginalization, the Fisher-Buehler—Feddersen paradox, etc. no longer
are troublesome as problems illustrating a failure in the foundations of
probability and (subjective Bayesian) statistical theory.

Should we then advocate the use of merely finitely additive
probabilities as likelihoods and/or prior distributions? So much is
unknown, or known only to a very few, about the probability theory
of merely finitely additive probabilities that, as of 1985, it is very
difficult to make such a judgment. On the one hand, merely finitely
additive distributions do allow certain kinds of invariant distributions
not allowed under the requirement of countable additivity, such as
uniform distributions on countable sets, and translation invariant
measures on the real line. For certain purposes these may be useful
objects (Jeffreys, 1961: Zellner, 1971; Box and Tiao, 1973). Yet count-
ably additive distributions do offer a wide range of expression of
opinion as it is. For the moment, then, we propose the dual strategy
of encouraging the development of the probability theory of finite
additivity, while leaving open the matter of whether the extra general-
ity permitted by going beyond countably additive opinions is worth the
cost.

We conjecture that, ultimately, the combined force of deFinetti’s
argument that only finitely additive probabilities are required for
coherence, and the kind of considerations that led Dubins and Savage
(1965) to write their book in a finitely additive framework, will lead to
a recognition that finitely additive probability is the proper setting for
subjective Bayesian inference. The pace at which this innovation occurs
will be governed largely, we think, by the development of the neces-
sary probability theory.

APPENDIX: NON-CONGLOMERABILITY OF COUNTABLY
ADDITIVE PROBABILITIES__

To continue Example 6.1, consider two independent standard
normal random variables X, and X, with X, = 0 impossible. Define
Yo=X,~cX,and Z,= (X, - a)/X,. Then A, =Y, =a} = {Z,=c}). The
conditional density of X, given Y. = a, (X, la), is proportional to

exp {— 11+ cz)[xz +ca(l+ cz)_l]z},

and the conditional density of X, given Z, = ¢, f%x,l¢), is propor-
tional to
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|x;lexp {— L1+ cz)[xz +ca(l+ cz)_l]z}.

The set {(a, ¢, x):f*(xIc) = fu(x|a)} has zero three-dimensional Lebesgue
measure. If we assume that the conditional density of X,, given A,,,
f(xzla, ¢), is defined for all a and ¢ and is a measurable function of (x2,
a, ¢), then the conditions of Theorem A1 below are satisfied. The con-
clusion is that conglomerability fails in some uncountable partition. In
fact, the partition will be the one determined by one of the random
variables Y, or one of the Z,. '

Theorem Al. Suppose two random variables (X;, X,) have a joint
density f(x;, x,) which is strictly positive over some measurable set G
of positive Lebesgue measure. Let R denote the real numbers. Suppose
there exist two sets of random variables {Y.:c € R} and {Z,:a € R}, all
measurable functions of (X;, X3), such that Y. = q if and only if Z, = c,
and (Y., X;), and (Z,, X;) are each one-to-one functions of (X}, X;) for
all a and c. Suppose the conditional density of X,, given A4, = {Y, = a}
={Z,=c},is fix,la, c) and is a measurable function of (x,, a, c). Suppose
that the transformation of variables technique gives the conditional
demsity of X5, given Y. = a, as f(x,|a), and given Z, = ¢, as f*(x,|c), with
the three-dimensional Lebesgue measure of {(a, ¢, x): f*(x!¢c) = f.(xla)}
equal to zero. Then there exists § > 0, an event F, and a partition
r={hy: b € R} such that

P(E)- | P(E|h,)dP(h) > 8(or < —5) (A1)

and conglomerability fails in the partition 7.

Before proving Theorem A1, we state and prove the following lemma.

Lemma A2. Under the conditions of Theorem A1, there exists £ > 0,
such that for some c the intersection of one of the following two sets
with G has positive Lebesgue measure:

Gile,e)= g {(a, x2): flna]a, ©)~ fe(raa) >},

G, (c, €)=g{(a, x,): f(xzla, ©) - f. (x2]a) > —€}.

or for some a, the intersection of one of the following two sets with G
has positive Lebesgue measure:

227



Gi(a,8)=(g") {(c, x2): f(xs]a, )~ f*(xs]c) > €},
Gilc,8)=(g) " {(c, x2): f(xsa, ) - fexalc) < ~€}.

Proof of Lemma A2. Iet (Yo, Xp) = g (X, Xy)and (Z,, X,) = (X1, Xo)
be the one-to-one functions guaranteed by the hypothesis of Theorem
Al. Since g” and g, are both one-to-one measurable functions, if D is
any subset of G, then D has positive Lebesgue measure if and only if
8.(D) has positive measure for all ¢ and g°(D) has positive measure for
all a. Assume that for all £ > 0, and a the intersections of Gs(a, €) and
Ga(a, €) with G have zero Lebesgue measure. It follows that the inter-
section of G with

(8*) {(c, %2): f(xsla, €)% f2(xs| )}

has zero Lebesgue measure for all 4. It follows that the Lebesgue
measure of

g G) N {(c, x,): f(_lea, c)# f*(x;|c)}

is zero for all a. Integrating the measure of this set with respect to one-
dimensional Lebesgue measure da gives that the three-dimensional
measure of

[U {(a,c,x2):(c, x,) eg“(G)}]ﬂ (a, ¢, x2): f(xala, €)% f2(x,| )}
(A2)

is zero. Call the set on the left of the intersect symbol in equation (A2)
A and call the set on the right B. Next, consider the set

An{(a, c,x;): flxs]a, ¢) = f.(x,]a)}. (A3)

Call the set on the right of the intersect symbol in equation (A3) C
It follows from the hypotheses of Theorem A1 that B° A C has zero
measure, where B¢ is the complement of B. Write

ANC=(ANCNB)U(ANC N B).

Since A N B and C N B° both have zero measure, so does A N C. Since
8:(%1, x2) = (a, x,) if and only if g*(x,, X2) = (a, x,), it follows that we can
also write A as

U@, ¢, x2):(a, x,) e 5. (G}
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The three-dimensional measure of A N C equals the integral over R
with respect to dc of the two-dimensional measure of

8:(G)n{(a, x2): f(xs]a, ¢) = f.(x2]a)},

which must be zero for almost all ¢ by Tonelli’s Theorem. Since g.(G)
has positive measure, the intersection of g,(G) with either

{(@, x3): f(xsla, ¢) > f.(x,|a)}
or
{(a, x2): f(xs]a, c)< f. (xs|a)}

has positive measure for some c. Hence, there exists £ > 0 and ¢ such
that the intersection of G with one of the sets Gi(c, £) ot G, (c, €) has
positive measure. []

Proof of Theorem Al. In the notation of Lemma A2, suppose that the
intersection of G; = Gy(c,, €) with G has positive Lebesgue measure.
The proof is similar for the others. Let f, (a) denote the marginal
density of Y. Consider the partition 7 = {h,: a € R}, where h, = A,
This is the partition determined by Y., hence dP(k,) = £, (a)da. If E is
any event of the form {(X;, X;) € D}, then

PE)=[[, s, z)dmde, = [ fo(ela)f,@deda. (A4)

Let D = G, and E = {(X}, X,) € D}. Note that P(E) is positive since
the intersection of G and D has positive Lebesgue measure. Let
Gy = g.(Gy). Since G,, is one-to-one, equation (A4) implies:

PE)=[]_ flala)f.,(@)dx.da. (A5)
From the definitions of G, and G, and equation (A5), it follows that
PE)< [, flula, c)fiy(@)dxsda-ef [ f(@)dr,da.  (A6)

Since P(E) is positive, it follows from equation (A6) that f, cannot be
zero almost everywhere in G, hence the second integral on the right-
hand side of equation (A6) is positive. Let § = &f [,f;,(a) dx,da > 0. If
we let G(a) = {x;: (a, x2) € Go}, then E N A, equals {a} x G(a) and

P(E| Aueo) = [, (ol a, co)dx, (A7)
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by the definition of f(x,!a, c;). The first integral on the right-hand side
of (A6) can be rewritten, using equation (A7), as

[eJow T ala, co)fenl@)drda= | P(E|4,,)f.,(a)da
= [ P(E|h,)dP(h,). (A8)

Together equation (A6), equation (A8), and the definition of § imply
equation (Al) (with < —§). In the terminology of Dubins (1975), we
have proven that the joint distribution of X, and X, is not disintegrable

in 7. Dubins proves that this implies that conglomerability fails in
malso. [

To conclude Example 6.1, assume that the conditional density of X,
given A, is given by f(x,la, ¢). As long as this is a measurable function
of (x3,a, ¢), Theorem A1 shows that conglomerability fails in some par-
tition determined by one of the Y. or one of the Z,.
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