Rome Conference, November 2006:

Some Highlights from the Theory of Multivariate Symmetries

Olav Kallenberg Auburn University

1

Basic Symmetries

For infinite random sequences $X = (X_j)$, we have the following basic symmetries, listed in order of strength, along with the associated classes of transformations. (Thus, X has the property on the left iff its distribution is invariant under the transformations on the right.)

stationary	shifts
contractable	contractions
exchangeable	permutations
rotatable	rotations

In particular, X is *contractable* if all subsequences have the same distribution and *rotatable* if the joint distribution is invariant under any orthogonal transformation of finitely many elements.

Classical Results for Infinite Sequences

For infinite sequences $X = (X_j)$ of random variables, we have the following basic characterizations:

- ♣ de Finetti (1937): X is exchangeable iff it is mixed (or conditionally) i.i.d.
- Ryll-Nardzewski (1957): X is contractable iff it is exchangeable, hence mixed i.i.d.
- ♣ Freedman (1962): X is rotatable iff it is mixed i.i.d. centered Gaussian

Symmetries on Two-Dimensional Arrays

For random arrays of the form

$$X = (X_{ij}; i, j \ge 1),$$

we define

$$(X \circ (p,q))_{ij} = X_{p_i,q_j}, \quad i,j \ge 1.$$

Say that X is

- separately exchangeable if $X \circ (p,q) \stackrel{d}{=} X$ for all permutations $p = (p_i)$ and $q = (q_j)$,
- jointly exchangeable if $X \circ (p, p) \stackrel{d}{=} X$ for all permutation $p = (p_i)$.

The definitions of separate or joint contractability or rotatability are similar. So are the definitions for higher-dimensional arrays. Note that separate exchangeability and contractability are equivalent.

Natural Index Sets

An array $X = (X_{ij})$ on \mathbb{N}^2 is *jointly exchangeable* iff the same property holds for the array

$$Y_{ij} = (X_{ij}, X_{ii}), \quad i \neq j.$$

It is then enough to consider arrays indexed by the *non-diagonal* part of \mathbb{N}^2 . In general, we may consider exchangeable arrays on the class $\overline{\mathbb{N}}$ of *finite sequences of distinct numbers in* \mathbb{N} .

Similarly, an array $X = (X_{ij})$ on \mathbb{N} is *jointly* contractable iff the same property holds for the array

$$Z_{ij} = (X_{ij}, X_{ji}, X_{ii}), \quad i < j.$$

It is then enough to consider arrays indexed by the *sub-diagonal* part of \mathbb{N}^2 , which may be identified with the set of unordered pairs $\{i, j\}$. In general, we may consider contractable arrays on the class $\widetilde{\mathbb{N}}$ of *finite subsets* of \mathbb{N} .

Functional Form of de Finetti's Theorem

An infinite sequence $X = (X_n)$ of r.v.'s is exchangeable iff a.s.

$$X_n = f(\alpha, \xi_n), \quad n \ge 1,$$

for a measurable function f on $[0,1]^2$ and some *i.i.d.* U(0,1) r.v.'s α and ξ_1, ξ_2, \ldots .

Here the X_n are conditionally i.i.d. given α . The function f is not unique, and the construction of α and ξ_1, ξ_2, \ldots may require an extension of the basic probability space.

Representation of Exchangeable Arrays

Aldous (1981), Hoover (1979): An array $X = (X_{ij})$ is separately exchangeable iff a.s.

$$X_{ij} = f(\alpha, \xi_i, \eta_j, \zeta_{ij}), \quad i, j \ge 1,$$

for a measurable function f on $[0, 1]^4$ and some *i.i.d.* U(0, 1) r.v.'s α , ξ_i , η_j , ζ_{ij} .

♣ Hoover (1979): An array $X = (X_{ij}; i \neq j)$ is jointly exchangeable iff a.s.

$$X_{ij} = f(\alpha, \xi_i, \xi_j, \zeta_{ij}), \quad i \neq j,$$

for a measurable function $f : [0,1]^4 \to \mathbb{R}$ and some *i.i.d.* U(0,1) r.v.'s α , ξ_i , $\zeta_{ij} = \zeta_{ji}, i \neq j$.

Representation and Extension of Contractable Arrays

& K(1992): An array $X = (X_{ij}; i < j)$ is jointly contractable iff a.s.

 $X_{ij} = f(\alpha, \xi_i, \xi_j, \zeta_{ij}), \quad i < j,$

for a measurable function f on $[0, 1]^4$ and some *i.i.d.* U(0, 1) r.v.'s α , ξ_i , ζ_{ij} , i < j.

Comparing with the jointly exchangeable case gives:

An sub-diagonal array is jointly contractable iff it can be extended to a jointly exchangeable array on the non-diagonal index set.

No direct proof is known.

Higher-Dimensional Arrays

For $k = (k_1, ..., k_n)$, let $\tilde{k} = \{k_1, ..., k_n\}$.

Hoover (1979): An array X on $\overline{\mathbb{N}}$ is jointly exchangeable iff a.s.

 $X_k = f(\xi_I; I \subset \tilde{k}), \quad k \in \overline{\mathbb{N}},$

for a measurable function f on $\bigcup_n [0, 1]^{2^n}$ and some *i.i.d.* U(0, 1) r.v.'s ξ_I , $I \in \widetilde{\mathbb{N}}$.

♣ K(1992): An array X on N is jointly contractable iff a.s.

$$X_J = f(\xi_I; I \subset J), \quad J \in \mathbb{N},$$

for a measurable function f on $\bigcup_n [0, 1]^{2^n}$ and some *i.i.d.* U(0, 1) r.v.'s ξ_I , $I \in \widetilde{\mathbb{N}}$.

 $\clubsuit An array on \mathbb{N} is jointly contractable iff it can be extended to an jointly exchangeable array on \mathbb{N}.$

Rotatable Arrays

Freedman (1962): A sequence $X = (X_i)$ is rotatable iff a.s.

$$X_i = \sigma \zeta_i, \quad i \ge 1,$$

for some i.i.d. N(0,1) r.v.'s ζ_i and an independent r.v. σ .

Aldous (1981): An array $X = (X_{ij})$ is separately rotatable iff a.s.

$$X_{ij} = \sigma \zeta_{ij} + \sum_k \alpha_k \, \xi_{ki} \, \eta_{kj}, \quad i, j \ge 1,$$

for some i.i.d. N(0,1) r.v.'s ξ_{ki} , η_{kj} , ζ_{ij} and an independent set of r.v.'s σ and α_k satisfying $\sum_k \alpha_k^2 < \infty$.

& K(1988): An array $X = (X_{ij})$ is jointly rotatable iff a.s.

$$X_{ij} = \rho \delta_{ij} + \sigma \zeta_{ij} + \sigma' \zeta_{ji} + \sum_{h,k} \alpha_{hk} \left(\xi_{hi} \, \xi_{kj} - \delta_{ij} \delta_{hk} \right), \quad i, j \ge 1,$$

for some i.i.d. N(0,1) r.v.'s ξ_{hi} , ζ_{ij} and an independent set of r.v.'s ρ , σ , σ' , α_{hk} satisfying $\sum_{h,k} \alpha_{hk}^2 < \infty$.

Hilbert-Space Setting

By a continuous, linear, random functional (CLRF) on a (separable, infinite-dimensional, real) Hilbert space H we mean a random process X on H such that

- $h_n \to 0$ in *H* implies $Xh_n \xrightarrow{P} 0$,
- X(ah+bk) = aXh+bXk a.s. for all $h, k \in H, a, b \in \mathbb{R}$.

An isonormal Gaussian process (G-process) on H is defined as a centered Gaussian process X on H such that

$$\operatorname{Cov}(Xh, Xk) = \langle h, k \rangle, \quad h, k \in H.$$

A unitary operator on H is a linear isometry Uof H onto itself. Say that a CLRF X is rotatable if $X \circ U \stackrel{d}{=} X$ for all unitary operators U, where $(X \circ U)h = X(Uh)$.

♣ Freedman (1962–63): A CLRF X on H is rotatable iff $X = \sigma \eta$ a.s. for some Gprocess η and an independent r.v. $\sigma \ge 0$.

Multi-Variate Rotations

To understand tensor products, we may assume that $H_k = L^2(\mu_k)$ for all k. Then

$$H_1 \otimes \cdots \otimes H_n = L^2(\mu_1 \otimes \cdots \otimes \mu_n),$$

$$(h_1 \otimes \cdots \otimes h_n)(s_1, \dots, s_n) = h_1(s_1) \cdots h_n(s_n).$$

For any unitary operators U_k on H_k , $k \leq n$, there exists a unique unitary operator $\bigotimes_k U_k = U_1 \otimes \cdots \otimes U_n$ on $\bigotimes_k H_k = H_1 \otimes \cdots \otimes H_n$ such that

$$(U_1 \otimes \cdots \otimes U_n)(h_1 \otimes \cdots \otimes h_n) = U_1 h_1 \otimes \cdots \otimes U_n h_n.$$

Write $H^{\otimes n} = H \otimes \cdots \otimes H$ and $U^{\otimes n} = U \otimes \cdots \otimes U$.

A CLRF X on $H^{\otimes n}$ is said to be

- separately rotatable if $X \circ \bigotimes_k U_k \stackrel{d}{=} X$ for all unitary operators U_1, \ldots, U_n on H,
- jointly rotatable if $X \circ U^{\otimes n} \stackrel{d}{=} X$ for all unitary operators U on H.

Multiple Wiener–Itô Integrals

The basic examples of separately or jointly rotatable CLRF's are the *multiple WI-integrals*, defined as follows:

For any independent G-processes η_k on H_k , $k \leq n$, there exists an a.s. unique CLRF $\otimes_k \eta_k$ on $\otimes_k H_k$ such that, a.s. for any $h_k \in H_k$,

 $(\eta_1 \otimes \cdots \otimes \eta_n)(h_1 \otimes \cdots \otimes h_n) = \eta_1 h_1 \cdots \eta_n h_n.$

For any G-process η on H and any $n \in \mathbb{N}$, there exists an a.s. unique CLRF $\eta^{\otimes n}$ on $H^{\otimes n}$ such that, a.s. for orthogonal $h_1, \ldots, h_n \in H$,

$$\eta^{\otimes n}(h_1\otimes\cdots\otimes h_n)=\eta h_1\cdots\eta h_n.$$

Clearly $\otimes_k \eta_k$ is separately rotatable and $\eta^{\otimes n}$ is jointly rotatable. Similarly, we may define CLRF's on $\otimes_k H_k^{\otimes r_k}$ of the form $\otimes_k \eta_k^{\otimes r_k}$.

Separately Rotatable Random Functionals

Let \mathcal{P}_d be the set of partitions of $\{1, \ldots, d\}$. Put $H^{\otimes J} = \bigotimes_{j \in J} H$ and $H^{\otimes \pi} = \bigotimes_{J \in \pi} H$.

& K(1995) A CLRF X on $H^{\otimes d}$ is separately rotatable iff a.s.

$$Xf = \sum_{\pi \in \mathcal{P}_d} (\bigotimes_{J \in \pi} \eta_J)(\alpha_{\pi} \otimes f), \quad f \in H^{\otimes d},$$

for some independent G-processes η_J on $H \otimes H^{\otimes J}$, $J \in 2^d \setminus \{\emptyset\}$, and an independent set of random elements $\alpha_{\pi} \in H^{\otimes \pi}$, $\pi \in \mathcal{P}_d$.

This is equivalent to the basis representation

$$X_k = \sum_{\pi \in \mathcal{P}_d} \sum_{l \in \mathbf{N}^{\pi}} \alpha_l^{\pi} \prod_{J \in \pi} \eta_{k_J, l_J}^J, \quad k \in \mathbf{N}^d,$$

where

$$X_{k_1,\ldots,k_d} = X(h_{k_1} \otimes \cdots \otimes h_{k_d})$$

for some ONB $h_1, h_2, \ldots \in H$. Any separately rotatable array can be represented in this form.

Jointly Rotatable Random Functionals

Let \mathcal{O}_d be the class of partitions of $\{1, \ldots, d\}$ into *ordered* sets $k = (k_1, \ldots, k_r)$ of size |k| = r.

& $\mathbf{K(1995)}$ A CLRF X on H^d is jointly rotatable iff a.s.

$$Xf = \sum_{\pi \in \mathcal{O}_d} (\bigotimes_{k \in \pi} \eta_{|k|}) (\alpha_{\pi} \otimes f), \quad f \in H^{\otimes d},$$

for some independent G-processes η_k on $H^{\otimes (k+1)}$, $k \leq d$, and an independent set of elements $\alpha_{\pi} \in H^{\otimes \pi}$, $\pi \in \mathcal{O}_d$.

This may again be restated in basis form, using the representation of multiple WI-integrals in terms of Hermite polynomials. However, the general representation of jointly rotatable arrays is more complicated, since it also involves diagonal terms of different order.

Separately Exchangeable Random Sheets

A random sheet on \mathbb{R}^d_+ is a continuous process $X = (X_t)$ such that $X_t = 0$ when $\min_j t_j = 0$. Exchangeability and contractability are defined in terms of the increments.

Let $\hat{\mathcal{P}}_d = \bigcup_J \mathcal{P}_J$, where \mathcal{P}_J is the class of partitions of $J \in 2^d \setminus \{\emptyset\}$. For $\pi \in \mathcal{P}_J$, write $\pi^c = J^c$.

\clubsuit K(1995) A random sheet X on \mathbb{R}^d_+ is separately exchangeable iff a.s.

$$X_t = \sum_{\pi \in \hat{\mathcal{P}}_d} (\lambda^{\pi^c} \otimes \bigotimes_{J \in \pi} \eta_J) (\alpha_{\pi} \otimes [0, t]), \quad t \in \mathbb{R}^d_+,$$

for some independent G-processes η_J on $H \otimes L^2(\lambda^J)$ and an independent set of random elements $\alpha_{\pi} \in H^{\otimes \pi}$.

A similar representation holds for separately exchangeable random sheets on $[0, 1]^d$.

Jointly Exchangeable and Contractable Random Sheets

For any $\pi \in \hat{\mathcal{P}}_d$, put $\hat{\mathcal{O}}_{\pi} = \bigcup_{J \in \pi} \mathcal{O}_J$, and define the vectors \hat{t}_{π} by $\hat{t}_{\pi,J} = \min_{j \in J} t_j$, $J \in \pi$.

& K(1995) A random sheet X on \mathbb{R}^d_+ is jointly exchangeable iff, a.s. for all $t \in \mathbb{R}^d_+$,

$$X_t = \sum_{\pi \in \mathcal{P}_d} \sum_{\kappa \in \hat{\mathcal{O}}_{\pi}} (\lambda^{\pi^c} \otimes \bigotimes_{k \in \kappa} \eta_{|k|}) (\alpha_{\pi,\kappa} \otimes [0, \hat{t}_{\pi}]),$$

for some independent G-processes η_m on $H \otimes L^2(\lambda^m)$, $m \leq d$, and an independent set of random elements $\alpha_{\pi,\kappa} \in H^{\otimes \kappa}$, $\kappa \in \hat{\mathcal{O}}_{\pi}$, $\pi \in \mathcal{P}_d$.

A similar but more complicated representation holds for jointly contractable sheets on \mathbb{R}^d_+ . The problem of characterizing jointly exchangeable sheets on $[0, 1]^d$ remains open.

1930-37	de Finetti	exchangeable sequences
1938	de Finetti	partial exchangeability
1938	Schoenberg	completely monotone functions
1951	Itô	multiple Wiener integrals
1957	Ryll-Nardzewski	contractable sequences
1960	Bühlmann	exchangeable processes
1961	Gaifman	exchangeable arrays in logic
1962-63	Freedman	rotatable sequences/processes
1969	Krauss	exchangeable arrays in logic
1970-73	Olson/Uppuluri	rotatable matrices
1972-78	Dawid	exchangeable/rotatable arrays
1975	McGinley/Sibson	exchangeable arrays
1976	Silverman	exchangeable arrays
1978	Eagleson/Weber	exchangeable arrays
1979	Hoover	exchangeable arrays
1981	Aldous	$exchangeable/rotatable \ arrays$
1981	Diaconis/Freedman	arrays in visual perception
1982	Dovbysh/Sudakov	exchangeable arrays
1986	Hestir	exchangeable arrays and sheets
1988-95	Kallenberg	arrays, sheets, measures, functionals
1992–	Ivanoff/Weber	exchangeable arrays
1996	Olshanski/Vershik	rotatable arrays
1		