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Basic Symmetries

For infinite random sequences X = (Xj),
we have the following basic symmetries, listed
in order of strength, along with the associated
classes of transformations. (Thus, X has the
property on the left iff its distribution is invari-
ant under the transformations on the right.)

stationary shifts
contractable contractions
exchangeable permutations

rotatable rotations

In particular, X is contractable if all subsequences
have the same distribution and rotatable if the
joint distribution is invariant under any orthog-
onal transformation of finitely many elements.
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Classical Results for

Infinite Sequences

For infinite sequences X = (Xj) of random
variables, we have the following basic charac-
terizations:

♣ de Finetti (1937): X is exchangeable iff
it is mixed (or conditionally) i.i.d.

♣ Ryll-Nardzewski (1957): X is contractable
iff it is exchangeable, hence mixed i.i.d.

♣ Freedman (1962): X is rotatable iff it is
mixed i.i.d. centered Gaussian
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Symmetries on

Two-Dimensional Arrays

For random arrays of the form

X = (Xij; i, j ≥ 1),

we define

(X ◦ (p, q))ij = Xpi,qj
, i, j ≥ 1.

Say that X is

• separately exchangeable if X ◦ (p, q) d= X

for all permutations p = (pi) and q = (qj),

• jointly exchangeable if X ◦ (p, p) d= X for
all permutation p = (pi).

The definitions of separate or joint contractabil-
ity or rotatability are similar. So are the defini-
tions for higher-dimensional arrays. Note that
separate exchangeability and contractability are
equivalent.
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Natural Index Sets

An array X = (Xij) on NN2 is jointly ex-
changeable iff the same property holds for the
array

Yij = (Xij, Xii), i 6= j.

It is then enough to consider arrays indexed by
the non-diagonal part of NN2. In general, we
may consider exchangeable arrays on the class
NN of finite sequences of distinct numbers in NN.

Similarly, an array X = (Xij) on NN is jointly
contractable iff the same property holds for the
array

Zij = (Xij, Xji, Xii), i < j.

It is then enough to consider arrays indexed by
the sub-diagonal part of NN2, which may be iden-
tified with the set of unordered pairs {i, j}. In
general, we may consider contractable arrays on
the class ÑN of finite subsets of NN.
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Functional Form of

de Finetti’s Theorem

♣ An infinite sequence X = (Xn) of r.v.’s is
exchangeable iff a.s.

Xn = f(α, ξn), n ≥ 1,

for a measurable function f on [0, 1]2 and some
i.i.d. U(0, 1) r.v.’s α and ξ1, ξ2, . . . .

Here the Xn are conditionally i.i.d. given α.
The function f is not unique, and the construc-
tion of α and ξ1, ξ2, . . . may require an extension
of the basic probability space.
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Representation of

Exchangeable Arrays

♣ Aldous (1981), Hoover (1979): An array
X = (Xij) is separately exchangeable iff
a.s.

Xij = f(α, ξi, ηj, ζij), i, j ≥ 1,

for a measurable function f on [0, 1]4 and
some i.i.d. U(0, 1) r.v.’s α, ξi, ηj, ζij.

♣ Hoover (1979): An array X = (Xij; i 6= j)
is jointly exchangeable iff a.s.

Xij = f(α, ξi, ξj, ζij), i 6= j,

for a measurable function f : [0, 1]4 → RR
and some i.i.d. U(0, 1) r.v.’s α, ξi, ζij =
ζji, i 6= j.
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Representation and Extension of

Contractable Arrays

♣ K(1992): An array X = (Xij; i < j) is
jointly contractable iff a.s.

Xij = f(α, ξi, ξj, ζij), i < j,

for a measurable function f on [0, 1]4 and
some i.i.d. U(0, 1) r.v.’s α, ξi, ζij, i < j.

Comparing with the jointly exchangeable case
gives:

♣ An sub-diagonal array is jointly contractable
iff it can be extended to a jointly exchange-
able array on the non-diagonal index set.

No direct proof is known.
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Higher-Dimensional Arrays

For k = (k1, . . . , kn), let k̃ = {k1, . . . , kn}.

♣ Hoover (1979): An array X on NN is jointly
exchangeable iff a.s.

Xk = f(ξI ; I ⊂ k̃), k ∈ NN,

for a measurable function f on
⋃

n[0, 1]2
n

and some i.i.d. U(0, 1) r.v.’s ξI, I ∈ ÑN.

♣ K(1992): An array X on ÑN is jointly con-
tractable iff a.s.

XJ = f(ξI ; I ⊂ J), J ∈ ÑN,

for a measurable function f on
⋃

n[0, 1]2
n

and some i.i.d. U(0, 1) r.v.’s ξI, I ∈ ÑN.

♣ An array on ÑN is jointly contractable iff it
can be extended to an jointly exchangeable
array on NN.
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Rotatable Arrays

♣ Freedman (1962): A sequence X = (Xi)
is rotatable iff a.s.

Xi = σζi, i ≥ 1,

for some i.i.d. N(0, 1) r.v.’s ζi and an in-
dependent r.v. σ.

♣ Aldous (1981): An array X = (Xij) is sep-
arately rotatable iff a.s.

Xij = σζij +
∑

kαk ξki ηkj, i, j ≥ 1,

for some i.i.d. N(0, 1) r.v.’s ξki, ηkj, ζij

and an independent set of r.v.’s σ and αk

satisfying
∑

k α2
k < ∞.

♣ K(1988): An array X = (Xij) is jointly ro-
tatable iff a.s.

Xij = ρδij + σζij + σ′ζji

+
∑

h,kαhk (ξhi ξkj − δijδhk), i, j ≥ 1,

for some i.i.d. N(0, 1) r.v.’s ξhi, ζij and
an independent set of r.v.’s ρ, σ, σ′, αhk

satisfying
∑

h,k α2
hk < ∞.
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Hilbert-Space Setting

By a continuous, linear, random functional
(CLRF) on a (separable, infinite-dimensional,
real) Hilbert space H we mean a random pro-
cess X on H such that

• hn → 0 in H implies Xhn
P→ 0,

• X(ah + bk) = aXh + bXk a.s.
for all h, k ∈ H, a, b ∈ RR.

An isonormal Gaussian process (G-process) on
H is defined as a centered Gaussian process X

on H such that

Cov(Xh, Xk) = 〈h, k〉, h, k ∈ H.

A unitary operator on H is a linear isometry U

of H onto itself. Say that a CLRF X is rotatable
if X ◦U d= X for all unitary operators U , where
(X ◦ U)h = X(Uh).

♣ Freedman (1962–63): A CLRF X on H

is rotatable iff X = ση a.s. for some G-
process η and an independent r.v. σ ≥ 0.
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Multi-Variate Rotations

To understand tensor products, we may as-
sume that Hk = L2(µk) for all k. Then

H1 ⊗ · · · ⊗Hn = L2(µ1 ⊗ · · · ⊗ µn),

(h1 ⊗ · · · ⊗ hn)(s1, . . . , sn) = h1(s1) · · ·hn(sn).

For any unitary operators Uk on Hk, k ≤ n,
there exists a unique unitary operator

⊗
k Uk =

U1 ⊗ · · · ⊗ Un on
⊗

k Hk = H1 ⊗ · · · ⊗ Hn such
that

(U1⊗· · ·⊗Un)(h1⊗· · ·⊗hn) = U1h1⊗· · ·⊗Unhn.

Write H⊗n = H⊗· · ·⊗H and U⊗n = U⊗· · ·⊗U .

A CLRF X on H⊗n is said to be

• separately rotatable if X ◦ ⊗
k Uk

d= X for
all unitary operators U1, . . . , Un on H,

• jointly rotatable if X ◦ U⊗n d= X for all
unitary operators U on H.
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Multiple Wiener–Itô Integrals

The basic examples of separately or jointly
rotatable CLRF’s are the multiple WI-integrals,
defined as follows:

♣ For any independent G-processes ηk on
Hk, k ≤ n, there exists an a.s. unique CLRF⊗

k ηk on
⊗

k Hk such that, a.s. for any hk ∈ Hk,

(η1 ⊗ · · · ⊗ ηn)(h1 ⊗ · · · ⊗ hn) = η1h1 · · · ηnhn.

♣ For any G-process η on H and any n ∈ NN,
there exists an a.s. unique CLRF η⊗n on H⊗n

such that, a.s. for orthogonal h1, . . . , hn ∈ H,

η⊗n(h1 ⊗ · · · ⊗ hn) = ηh1 · · · ηhn.

Clearly
⊗

k ηk is separately rotatable and η⊗n

is jointly rotatable. Similarly, we may define
CLRF’s on

⊗
k H⊗rk

k of the form
⊗

k η⊗rk
k .
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Separately Rotatable

Random Functionals

Let Pd be the set of partitions of {1, . . . , d}.
Put H⊗J =

⊗
j∈J H and H⊗π =

⊗
J∈π H.

♣ K(1995) A CLRF X on H⊗d is sepa-
rately rotatable iff a.s.

Xf =
∑

π∈Pd

(
⊗
J∈π

ηJ)(απ ⊗ f), f ∈ H⊗d,

for some independent G-processes ηJ on H ⊗
H⊗J , J ∈ 2d \ {∅}, and an independent set of
random elements απ ∈ H⊗π, π ∈ Pd.

This is equivalent to the basis representation

Xk =
∑

π∈Pd

∑
l∈NNπ

απ
l

∏
J∈π

ηJ
kJ ,lJ

, k ∈ NNd,

where

Xk1,...,kd
= X(hk1

⊗ · · · ⊗ hkd
)

for some ONB h1, h2, . . . ∈ H. Any separately
rotatable array can be represented in this form.
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Jointly Rotatable

Random Functionals

Let Od be the class of partitions of {1, . . . , d}
into ordered sets k = (k1, . . . , kr) of size |k| = r.

♣ K(1995) A CLRF X on Hd is jointly
rotatable iff a.s.

Xf =
∑

π∈Od

(
⊗
k∈π

η|k|)(απ ⊗ f), f ∈ H⊗d,

for some independent G-processes ηk on H⊗(k+1),
k ≤ d, and an independent set of elements απ ∈
H⊗π, π ∈ Od.

This may again be restated in basis form, us-
ing the representation of multiple WI-integrals
in terms of Hermite polynomials. However, the
general representation of jointly rotatable ar-
rays is more complicated, since it also involves
diagonal terms of different order.

15



Separately Exchangeable

Random Sheets

A random sheet on RRd
+ is a continuous pro-

cess X = (Xt) such that Xt = 0 when minj tj =
0. Exchangeability and contractability are de-
fined in terms of the increments.

Let P̂d =
⋃

J PJ , where PJ is the class of
partitions of J ∈ 2d \ {∅}. For π ∈ PJ , write
πc = J c.

♣ K(1995) A random sheet X on RRd
+ is

separately exchangeable iff a.s.

Xt =
∑

π∈P̂d

(λπc ⊗
⊗
J∈π

ηJ)(απ ⊗ [0, t]), t ∈ RRd
+,

for some independent G-processes ηJ on H ⊗
L2(λJ) and an independent set of random ele-
ments απ ∈ H⊗π.

A similar representation holds for separately
exchangeable random sheets on [0, 1]d.
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Jointly Exchangeable and

Contractable Random Sheets

For any π ∈ P̂d, put Ôπ =
⋃

J∈π OJ , and de-
fine the vectors t̂π by t̂π,J = minj∈J tj, J ∈ π.

♣ K(1995) A random sheet X on RRd
+ is

jointly exchangeable iff, a.s. for all t ∈ RRd
+,

Xt =
∑

π∈Pd

∑
κ∈Ôπ

(λπc ⊗
⊗
k∈κ

η|k|)(απ,κ ⊗ [0, t̂π]),

for some independent G-processes ηm on H ⊗
L2(λm), m ≤ d, and an independent set of ran-
dom elements απ,κ ∈ H⊗κ, κ ∈ Ôπ, π ∈ Pd.

A similar but more complicated representa-
tion holds for jointly contractable sheets on RRd

+.
The problem of characterizing jointly exchange-
able sheets on [0, 1]d remains open.
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1930–37 de Finetti exchangeable sequences
1938 de Finetti partial exchangeability
1938 Schoenberg completely monotone functions
1951 Itô multiple Wiener integrals
1957 Ryll-Nardzewski contractable sequences
1960 Bühlmann exchangeable processes
1961 Gaifman exchangeable arrays in logic
1962–63 Freedman rotatable sequences/processes
1969 Krauss exchangeable arrays in logic
1970–73 Olson/Uppuluri rotatable matrices
1972–78 Dawid exchangeable/rotatable arrays
1975 McGinley/Sibson exchangeable arrays
1976 Silverman exchangeable arrays
1978 Eagleson/Weber exchangeable arrays
1979 Hoover exchangeable arrays
1981 Aldous exchangeable/rotatable arrays
1981 Diaconis/Freedman arrays in visual perception
1982 Dovbysh/Sudakov exchangeable arrays
1986 Hestir exchangeable arrays and sheets
1988–95 Kallenberg arrays, sheets, measures, functionals
1992– Ivanoff/Weber exchangeable arrays
1996 Olshanski/Vershik rotatable arrays
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