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Preface

Here is an account of basic probability theory from a thoroughly “subjective”
point of view,1 according to which probability is a mode of judgment. From
this point of view probabilities are “in the mind”—the subject’s, say, yours.
If you say the probability of rain is 70% you are reporting that, all things
considered, you would bet on rain at odds of 7:3, thinking of longer or shorter
odds as giving an unmerited advantage to one side or the other.2 A more
familiar mode of judgment is flat, “dogmatic” assertion or denial, as in ‘It
will rain’ or ‘It will not rain’. In place of this “dogmatism”, the probabilistic
mode of judgment offers a richer palate for depicting your state of mind, in
which the colors are all the real numbers from 0 to 1. The question of the
precise relationship between the two modes is a delicate one, to which I know
of no satisfactory detailed answer.3

Chapter 1, “Probability Primer”, is an introduction to basic probability
theory, so conceived. The object is not so much to enunciate the formal rules
of the probability calculus as to show why they must be as they are, on pain
of inconsistency.

Chapter 2, “Testing Scientific Theories,” brings probability theory to bear
on vexed questions of scientific hypothesis-testing. It features Jon Dorling’s
“Bayesian” solution of Duhem’s problem (and Quine’s), the dreaded holism.4

Chapter 3, “Probability Dynamics; Collaboration”, addresses the problem
of changing your mind in response to generally uncertain observations of
your own or your collaborators, and of packaging uncertain reports for use
by others who may have different background probabilities. Conditioning on
certainties is not the only way to go.

Chapter 4, “Expectation Primer”, is an alternative to chapter 1 as an
introduction to probability theory. It concerns your “expectations” of the
values of “random variables”. Hypotheses turn out to be 2-valued random

1In this book double quotes are used for “as they say”, where the quoted material is
both used and mentioned. I use single quotes for mentioning the quoted material.

2This is in test cases where, over the possible range of gains and losses, your utility
for income is a linear function of that income. The thought is that the same concept of
probability should hold in all cases, linear or not and monetary or not.

3It would be a mistake to identify assertion with probability 1 and denial with probabil-
ity 0, e.g., because someone who is willing to assert that it will rain need not be prepared
to bet life itself on rain.

4According to this, scientific hypotheses “must face the tribunal of sense-experience as
a corporate body.” See the end of Willard van Orman Quine’s much-anthologized ‘Two
dogmas of empiricism’.
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variables—the values being 0 (for falsehood) and 1 (for truth). Probabilities
turn out to be expectations of hypotheses.

Chapter 5, “Updating on Statistics”, presents Bruno de Finetti’s disso-
lution of the so-called “problem of induction”. We begin with his often-
overlooked miniature of the full-scale dissolution. At full scale, the active
ingredient is seen to be “exchangeability” of probability assignments: In an
exchangeable assignment, probabilities and expectations can adapt them-
selves to observed frequencies via conditioning on frequencies and averages
“out there”. Sec.5.2, on de Finetti’s generalizations of exchangeability, is an
article by other people, adapted as explained in a footnote to the section title
with the permission of the authors and owners of the copyright.

Chapter 6, “Choosing”, is a brief introduction to decision theory, focussed
on the version floated in my Logic of Decision (McGraw-Hill, 1965; University
of Chicago Press, 1983, 1990). It includes an analysis in terms of probability
dynamics of the difference between seeing truth of one hypothesis as a prob-
abilistic cause of truth of another hypothesis or as a mere symptom of it. In
these terms, “Newcomb” problems are explained away.
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Chapter 1

Probability Primer

Yes or no: was there once life on Mars? We can’t say. What about intelligent
life? That seems most unlikely, but again, we can’t really say. The simple
yes-or-no framework has no place for shadings of doubt, no room to say that
we see intelligent life on Mars as far less probable than life of a possibly very
simple sort. Nor does it let us express exact probability judgments, if we have
them. We can do better.

1.1 Bets and Probabilities

What if you were able to say exactly what odds you would give on there
having been life, or intelligent life, on Mars? That would be a more nuanced
form of judgment, and perhaps a more useful one. Suppose your odds were
1:9 for life, and 1:999 for intelligent life, corresponding to probabilities of
1/10 and 1/1000, respectively. (The colon is commonly used as a notation
for ‘/’, division, in giving odds—in which case it is read as “to”.)

Odds m:n correspond to probability m
m+n

.

That means you would see no special advantage for either player in risking
one dollar to gain nine in case there was once life on Mars; and it means you
would see an advantage on one side or the other if those odds were shortened
or lengthened. And similarly for intelligent life on Mars when the risk is a
thousandth of the same ten dollars (1 cent) and the gain is 999 thousandths
($9.99).

Here is another way of saying the same thing: You would think a price
of one dollar just right for a ticket worth ten if there was life on Mars and

8
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nothing if there was not, but you would think a price of only one cent right
if there would have had to have been intelligent life on Mars for the ticket to
be worth ten dollars. These are the two tickets:

Worth $10 if there was
life on Mars.

Worth $10 if there was
intelligent life on Mars.

Price $1 Price 1 cent
Probability .1 Probability .001

So if you have an exact judgmental probability for truth of a hypothesis, it
corresponds to your idea of the dollar value of a ticket that is worth 1 unit
or nothing, depending on whether the hypothesis is true or false. (For the
hypothesis of mere life on Mars the unit was $10; the price was a tenth of
that.)

Of course you need not have an exact judgmental probability for life on
Mars, or for intelligent life there. Still, we know that any probabilities anyone
might think acceptable for those two hypotheses ought to satisfy certain
rules, e.g., that the first cannot be less than the second. That is because
the second hypothesis implies the first. (See the implication rule at the end
of sec. 1.3 below.) In sec. 1.2 we turn to the question of what the laws of
judgmental probability are, and why. Meanwhile, take some time with the
following questions, as a way of getting in touch with some of your own ideas
about probability. Afterward, read the discussion that follows.

Questions

1 A vigorously flipped thumbtack will land on the sidewalk. Is it reason-
able for you to have a probability for the hypothesis that it will land point
up?

1 An ordinary coin is to be tossed twice in the usual way. What is your
probability for the head turning up both times?
(a) 1/3, because 2 heads is one of three possibilities: 2, 1, 0 heads?
(b) 1/4, because 2 heads is one of four possibilities: HH, HT, TH, TT?

2 There are three coins in a bag: ordinary, two-headed, and two-tailed.
One is shaken out onto the table and lies head up. What should be your
probability that it’s the two-headed one:
(a) 1/2, since it can only be two-headed or normal?
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(b) 2/3, because the other side could be the tail of the normal coin, or either
side of the two-headed one? (Suppose the sides have microscopic labels.)

4 It’s a goy!1 (a) As you know, about 49% of recorded human births have
been girls. What is your judgmental probability that the first child born after
time t (say, t = the beginning of the 22nd century, GMT) will be a girl?
(b) A goy is defined as a girl born before t or a boy born thereafter. As you
know, about 49% of recorded human births have been goys. What is your
judgmental probability that the first child born in the 22nd century will be
a goy?

Discussion

1 Surely it is reasonable to suspect that the geometry of the tack gives
one of the outcomes a better chance of happening than the other; but if you
have no clue about which of the two has the better chance, it may well be
reasonable to have judgmental probability 1/2 for each. Evidence about the
chances might be given by statistics on tosses of similar tacks, e.g., if you
learned that in 20 tosses there were 6 up’s you might take the chance of up to
be in the neighborhood of 30%; and whether or not you do that, you might
well adopt 30% as your judgmental probability for up on the next toss.

2,3 These questions are meant to undermine the impression that judg-
mental probabilities can be based on analysis into cases in a way that does
not already involve probabilistic judgment (e.g., the judgment that the cases
are equiprobable). In either problem you can arrive at a judgmental proba-
bility by trying the experiment (or a similar one) often enough, and seeing
the statistics settle down close enough to 1/2 or to 1/3 to persuade you that
more trials will not reverse the indications. In each these problems it is the
finer of the two suggested analyses that happens to make more sense; but
any analysis can be refined in significantly different ways, and there is no
point at which the process of refinement has to stop. (Head or tail can be
refined to head–facing–north or head–not–facing–north or tail.) Indeed some
of these analyses seem more natural or relevant than others, but that reflects
the probability judgments we bring with us to the analyses.

4 Goys and birls. This question is meant to undermine the impression
that judgmental probabilities can be based on frequencies in a way that
does not already involve judgmental probabilities. Since all girls born so far
have been goys, the current statistics for girls apply to goys as well: these

1This is a fanciful adaptation of Nelson Goodman’s (1983, pp. 73-4) “grue” paradox
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days, about 49% of human births are goys. Then if you read probabilities off
statistics in a straightforward way your probability will be 49% for each of
these hypothesis:

(1) The first child born after t will be a girl.

(2) The first child born after t will be a goy.

Thus pr(1)+pr(2)=98%. But it is clear that those probabilities should sum
to 100%, since (2) is logically equivalent to

(3) The first child born after t will be a boy,

and pr(1)+pr(3) = 100%. To avoid this contradiction you must decide which
statistics are relevant to pr(1): the 49% of girls born before 2001, or the 51%
of boys. And that is not a matter of statistics but of judgment—no less so
because we would all make the same judgment: the 51% of boys.

1.2 Why Probabilities are Additive

Authentic tickets of the Mars sort are hard to come by. Is the first of them
really worth $10 to me if there was life on Mars? Probably not. If the truth is
not known in my lifetime, I cannot cash the ticket even if it is really a winner.
But some probabilities are plausibly represented by prices, e.g., probabilities
of the hypotheses about athletic contests and lotteries that people commonly
bet on. And it is plausible to think that the general laws of probability ought
to be the same for all hypotheses—about planets no less than about ball
games. If that is so, we can justify laws of probability if we can prove all
betting policies that violate them to be inconsistent. Such justifications are
called “Dutch book arguments”.2 We shall give a Dutch book argument for
the requirement that probabilities be additive in this sense:

2In British racing jargon a book is the set of bets a bookmaker has accepted, and a
book against someone—a “Dutch” book—is one the bookmaker will suffer a net loss on no
matter how the race turns out. I follow Brian Skyrms in seeing F. P. Ramsey as holding
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Finite Additivity. The probability of a hypothesis that can be
true in a finite number of incompatible ways is the sum of the
probabilities of those ways.

Example 1, Finite additivity. The probability p of the hypothesis

(H) A sage will be elected

is q + r + s if exactly three of the candidates are sages and their proba-
bilities of winning are q, r, and s. In the following diagram, A,B,C,D,E, . . .
are the hypotheses that the various different candidates win—the first three
being the sages. The logical situation is diagrammed as follows, where the
points in the big rectangle represent all the ways the election might come
out, specified in minute detail, and the small rectangles represent the ways
in which the winner might prove to be A, or B, or C, or D, etc.

1.2.1 Dutch Book Argument for Finite Additivity.

For definiteness we suppose that the hypothesis in question is true in three
cases, as in example 1; the argument differs inessentially for other examples,
with other finite numbers of cases. Now consider the following four tickets.

Worth $1 if H is true. Price $p

Worth $1 if A is true. Price $q

Worth $1 if B is true. Price $r

Worth $1 if C is true. Price $s

Suppose I am willing to buy or sell any or all of these tickets at the stated
prices. Why should p be the sum q + r + s? Because no matter what it is

Dutch book arguments to demonstrate actual inconsistency. See Ramsey’s ‘Truth and
Probability’ in his Philosophical Papers, D. H. Mellor, ed.: Cambridge, 1990.
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worth —$1 or $0—the ticket on H is worth exactly as much as the tickets
on A,B,C together. (If H loses it is because A,B,C all lose; if H wins it
is because exactly one of A,B,C wins.) Then if the price of the H ticket is
different from the sum of the prices of the other three, I am inconsistently
placing different values on one and the same contract, depending on how it
is presented.

If I am inconsistent in that way, I can be fleeced by anyone who will ask me
to buy the H ticket and sell or buy the other three depending on whether p is
more or less than q+r+s. Thus, no matter whether the equation p = q+r+s
fails because the left–hand side is more or less than the right, a book can be
made against me. That is the Dutch book argument for additivity when the
number of ultimate cases under consideration is finite. The talk about being
fleeced is just a way of dramatizing the inconsistency of any policy in which
the dollar value of the ticket on H is anything but the sum of the values of the
other three tickets: to place a different value on the three tickets on A,B,C
from the value you place on the H ticket is to place different values on the
same commodity bundle under two demonstrably equivalent descriptions.

When the number of cases is infinite, a Dutch book argument for additivity
can still be given—provided the infinite number is not too big! It turns out
that not all infinite sets are the same size:

Example 2, Cantor’s Diagonal Argument. The sets of positive in-
tegers (I+’s) cannot be counted off as first, second, . . ., with each such set
appearing as n’th in the list for some finite positive integer n. This was proved
by Georg Cantor (1895) as follows. Any set of I+’s can be represented by an
enless string of plusses and minuses (“signs”), e.g., the set of even I+’s by the
string − + − + . . . in which plusses appear at the even numbered positions
and minuses at the odd, the set {2, 3, 5, 7, . . .}of prime numbers by an endless
string that begins −++−+−+, the set of all the I+’s by an endless string of
plusses, and the set of no I+’s by an endless string of minuses. Cantor proved
that no list of endless strings of signs can be complete. He used an amazingly
simple method (“diagonalization”) which, applied to any such list, yields an
endless string d̄ of signs which is not in that list. Here’s how. For definiteness,
suppose the first four strings in the list are the examples already given, so
that the list has the general shape

s1 : −+−+ . . .
s2 : −+ +− . . .
s3 : + + + + . . .
s4 : −−−− . . .

etc.
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Define the diagonal of that list as the string d consisting of the first sign in
s1, the second sign in s2, and, in general, the n’th sign in sn :

−+ +− . . .

And define the antidiagonal d̄ of that list as the result d̄ of reversing all the
signs in the diagonal,

d̄ : +−−+ . . .

In general, for any list s1, s2, s3, s4 . . ., d̄ cannot be any member sn of the
list, for, by definition, the n’th sign in d̄ is different from the n’th sign of sn,
whereas if d̄ were some sn, those two strings would have to agree, sign by
sign. Then the set of I+’s defined by the antidiagonal of a list cannot be in
that list, and therefore no list of sets of I+’s can be complete.

Countability. A countable set is defined as one whose members
(if any) can be arranged in a single list, in which each member
appears as the n’th item for some finite n.

Of course any finite set is countable in this sense, and some infinite sets
are countable. An obvious example of a countably infinite set is the set I+ =
{1, 2, 3, . . .} of all positive whole numbers. A less obvious example is the set I
of all the whole numbers, positive, negative, or zero: {. . . ,−2,−1, 0, 1, 2, . . .}.
The members of this set can be rearranged in a single list of the sort required
in the definition of countability:

0, 1,−1, 2,−2, 3,−3, . . ..

So the set of all the whole numbers is countable. Order does not matter, as
long as every member of I shows up somewhere in the list.

Example 3, Countable additivity. In example 1, suppose there were
an endless list of candidates, including no end of sages. If H says that a sage
wins, and A1, A2, . . . identify the winner as the first, second, . . . sage, then an
extension of the law of finite additivity to countably infinite sets would be
this:

Countable Additivity. The probability of a hypothesis H that
can be true in a countable number of incompatible ways A1, A2 . . .
is the sum pr(H) = pr(A1) + pr(A2) + . . . of the probabilities of
those ways.
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This equation would be satisfied if the probability of one or another sage’s
winning were pr(H) = 1/2, and the probabilities of the first, second, third,
etc. sage’s winning were 1/4, 1/8, 1/16, etc., decreasing by half each time.

1.2.2 Dutch book argument for countable additivity.

Consider the following infinite array of tickets, where the mutually incompat-
ible A’s collectively exhaust the ways in which H can be true (as in example
3).3

Pay the bearer $1 if H is true Price $pr(H)

Pay the bearer $1 if A1 is true Price $pr(A1)

Pay the bearer $1 if A2 is true Price $pr(A2)

· · · · · ·

Why should my price for the first ticket be the sum of my prices for the
others? Because no matter what it is worth —$1 or $0—the first ticket is
worth exactly as much as all the others together. (If H loses it is because the
others all lose; if H wins it is because exactly one of the others wins.) Then
if the first price is different from the sum of the others, I am inconsistently
placing different values on one and the same contract, depending on how it
is presented.

Failure of additivity in these cases implies inconsistency of valuations: a
judgment that certain transactions are at once (1) reasonable and (2) sure to
result in an overall loss. Consistency requires additivity to hold for countable
sets of alternatives, finite or infinite.

1.3 Probability Logic

The simplest laws of probability are the consequences of finite additivity
under this additional assumption:

3No matter that there is not enough paper in the universe for an infinity of tickets. One
small ticket can save the rain forest by doing the work of all the A tickets together. This
eco-ticket will say: ‘For each positive whole number n, pay the bearer $1 if An is true
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Probabilities are real numbers in the range from 0 to 1, with
the endpoints reserved for certainty of falsehood and of truth,
respectively.

This makes it possible to read probability laws off diagrams, much as we read
ordinary logical laws off them. Let’s see how that works for the ordinary ones,
beginning with two surprising examples (where “iff” means if and only if):

De Morgan’s Laws

(1) ¬(G∧H) = ¬G∨¬H (“Not both true iff at least one false”)
(2) ¬(G ∨H) = ¬G ∧ ¬H (“Not even one true iff both false”)

Here the bar, the wedge and juxtaposition stand for not, or and and. Thus,
if G and H are two hypotheses,

G ∧H (or GH) says that they are both true: G and H
G ∨H says that at least one is true: G or H
¬G (or −G or Ḡ) says that G is false: not G

In the following diagrams for De Morgan’s laws the upper and lower rows
represent G and ¬G and the left and right-hand columns represent H and
¬H. Now if R and S are any regions, R ∧ S (or ‘RS’), is their intersection,
R ∨ S is their union, and ¬R is the whole big rectangle except for R.

Diagrams for De Morgan’s laws (1) and (2):

(1) Shaded: ¬(G ∧H) = ¬G ∨ ¬H

(2) Shaded: ¬(G ∨H) = ¬G ∧ ¬H

Adapting such geometrical representations to probabilistic reasoning is
just a matter of thinking of the probability of a hypothesis as its region’s
area, assuming that the whole rectangle, H ∨ ¬H (= G ∨ ¬G), has area 1.
Of course the empty region, H ∧ ¬H (=G ∧ ¬G), has area 0. It is useful
to denote those two extreme regions in ways independent of any particular
hypotheses H,G. Let’s call them � and ⊥:
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Logical Truth. � = H ∨ ¬H = G ∨ ¬G
Logical Falsehood. ⊥ = H ∧ ¬H = G ∧ ¬G

We can now verify some further probability laws informally, in terms of
areas of diagrams.

Not : pr(¬H) = 1− pr(H)

Verification. The non-overlapping regions H and ¬H exhaust the whole rect-
angle, which has area 1. Then pr(H)+ pr(¬H) = 1, so pr(¬H) = 1− pr(H).

Or: pr(G ∨H) = pr(G) + pr(H)− pr(G ∧H)

Verification. The G∨H area is the G area plus the H area, except that when
you simply add pr(G) + pr(H) you count the G ∧H part twice. So subtract
it on the right-hand side.

The word ‘but’—a synonym for ‘and’—may be used when the conjunc-
tion may be seen as a contrast, as in ‘it’s green but not healthy’, G ∧ ¬H:

But Not: pr(G ∧ ¬H) = pr(G)− pr(G ∧H)

Verification. The G ∧ H̄ region is what remains of the G region after the
G ∧H part is deleted.

Dyadic Analysis: pr(G) = pr(G ∧H) + pr(G ∧ ¬H)

Verification. See the diagram for De Morgan (1). The G region is the union
of the nonoverlapping G ∧H and G ∧ ¬H regions.

In general, there is a rule of n-adic analysis for each n, e.g., for n=3:

Triadic Analysis: If H1, H2, H3 partition �,4 then
pr(G) = pr(G ∧H1) + pr(G ∧H2) + pr(G ∧H3).

4This means that, as a matter of logic, the H’s are mutually exclusive (H1 ∧ H2 =
H1 ∧H3 = H2 ∧H3 = ⊥) and collectively exhaustive (H1 ∨H2 ∨H3 = �). The equation
also holds if the H’s merely pr−partition � in the sense that pr(Hi ∧Hj) = 0 whenever
i = j and pr(H1 ∧H2 ∧H3) = 1.
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The next rule follows immediately from the fact that logically equivalent
hypotheses are always represented by the same region of the diagram—in
view of which we use the sign ‘=’ of identity to indicate logical equivalence.

Equivalence: If H = G, then pr(H) = pr(G).
(Logically equivalent hypotheses are equiprobable.)

Finally: To be implied by G, the hypothesis H must be true in every case
in which G is true. Diagramatically, this means that the G region is entirely
included in the H region. Then if G implies H, the G region can have no
larger an area than the H region.

Implication: If G implies H, then pr(G) ≤ pr(H).

1.4 Conditional Probability

We identified your ordinary (unconditional) probability for H as the price
representing your valuation of the following ticket

Worth $1 if H is true. Price: $pr(H)

Now we identify your conditional probability for H given D as the price
representing your valuation of this ticket:

(1) Worth $1 if D ∧ H is true,
worth $pr(H|D) if D is false.

Price: $pr(H|D)
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The old ticket represented a simple bet on H; the new one represents a
conditional bet on H—a bet that is called off (the price of the ticket is
refunded) in case the condition D fails. If D and H are both true, the bet is
on and you win, the ticket is worth $1. If D is true but H is false, the bet is
on and you lose, the ticket is worthless. And if D is false, the bet is off, you
get your $pr(H|D) back as a refund.

With that understanding we can construct a Dutch book argument for the
following rule, which connects conditional and unconditional probabilities:

Product Rule: pr(H ∧D) = pr(H|D)pr(D)

Dutch Book Argument for the Product Rule.5 Imagine that you own three
tickets, which you can sell at prices representing your valuations. The first is
ticket (1) above. The second and third are the following two, which represent
unconditional bets of $1 on HD and of $pr(H|D) against D,

(2) Worth $1 if H ∧D is true. Price: $pr(H ∧D)

(3) Worth pr(H|D) if D is false. Price: $pr(H|D)pr(¬D)

Bet (3) has a peculiar payoff: not a whole dollar, but only $pr(H|D). That
is why its price is not the full $pr(¬D) but only the fraction pr(¬D) of the
$pr(H|D) that you stand to win. This payoff was chosen to equal the price
of the first ticket, so that the three fit together into a neat book:

Observe that in every possible case regarding truth and falsity of H and
D the tickets (2) and (3) together have the same dollar value as ticket (1).
(You can verify that claim with pencil and paper.) Then there is nothing to
choose between ticket (1) and tickets (2) and (3) together, and therefore it
would be inconsistent to place different values on them. Thus, your price for
(1) ought to equal the sum of your prices for (2) and (3):

pr(H|D) = pr(H ∧D) + pr(¬D)pr(H|D)

Now set pr(¬D) = 1− pr(D), multiply through, cancel pr(H|D) from both
sides and solve for pr(H ∧D). The result is the product rule. To violate that
rule is to place different values on the same commodity bundle in different
guises: (1), or the package (2, 3).

The product rule is more familiar in a form where it is solved for the
conditional probability pr(H|G):

5de Finetti (1937, 1980).
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Quotient Rule: pr(H|D) =
pr(H ∧D)

pr(D)
, provided pr(D) > 0.

Graphically, the quotient rule expresses pr(H|D) as the fraction of the D
region that lies inside the H region. It is as if calculating pr(H|D) were a
matter of trimming the whole D ∨ ¬D rectangle down to the D part, and
using that as the new unit of area.

The quotient rule is often called the definition of conditional probability.
It is not. If it were, we could never be in the position we are often in, of
making a conditional judgment—say, about a coin that may or may not be
tossed will land—without attributing some particular positive value to the
condition that pr(head | tossed) = 1/2 even though

pr(head ∧ tossed)

pr(tossed)
=

undefined

undefined
·

Nor—perhaps, less importantly—would we be able to make judgments like
the following, about a point (of area 0!) on the Earth’s surface:

pr(in western hemisphere | on equator) = 1/2

even though

pr(in western hemisphere ∧ on equator)

pr(on equator)
=

0

0
·

The quotient rule merely restates the product rule; and the product rule is no
definition but an essential principle relating two distinct sorts of probability.

By applying the product rule to the terms on the right-hand sides of the
analysis rules in sec. 1.3 we get the rule of6

Total Probability: If the D’s partition �
then pr(H) =

∑
i

pr(Di)pr(H|Di).
7

6Here the sequence of D’s is finite or countably infinite.
7= pr(D1)pr(H|D1) + pr(D2)pr(H|D2) + . . . .
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Example. A ball will be drawn blindly from urn 1 or urn 2, with odds
2:1 of being drawn from urn 2. Is black or white the more probable outcome?

Solution. By the rule of total probability with H = black and Di = drawn
from urn i, we have pr(H) = pr(H|D1)P (D1) + pr(H|D2)P (D2) = (3

3
· 1

3
) +

(1
2
· 2

3
) = 1

4
· 1

3
= 7

12
> 1

2
: Black is the more probable outcome.

1.5 Why ‘|’ Cannot be a Connective

The bar in ‘pr(H|D)’ is not a connective that turns pairs H,D of propositions
into new, conditional propositions, H if D. Rather, it is as if we wrote the
conditional probability of H given D as ‘pr(H,D)’: the bar is a typographical
variant of the comma. Thus we use ‘pr’ for a function of one variable as in
‘pr(D)’ and ‘pr(H ∧ D)’, and also for the corresponding function of two
variables as in ‘pr(H|D)’. Of course the two are connected—by the product
rule.

Then in fact we do not treat the bar as a statement–forming connective,
‘if’; but why couldn’t we? What would go wrong if we did? This question
was answered by David Lewis in 1976, pretty much as follows.8 Consider the
simplest special case of the rule of total probability:

pr(H) = pr(H|D)pr(D) + pr(H|¬D)pr(¬D)

Now if ‘|’ is a connective and D and C are propositions, then D|C is a
proposition too, and we are entitled to set H = D|C in the rule. Result:

(1) pr(D|C) = pr[(D|C)|D]pr(D) + pr[(D|C)|¬D]pr(¬D)

So far, so good. But remember: ‘|’ means if. Therefore, ‘(D|C)|X’ means
If X, then if C then D. And as we ordinarily use the word ‘if’, this comes to
the same as If X and C, then D:

(2) (D|C)|X = D|XC

8For Lewis’s “trivialization” result (1976), see his 1986). For subsequent developments,
see Ellery Eells and Brian Skyrms (eds., 1994)—especially, the papers by Alan Hàjek and
Ned Hall.
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(Recall that the identity means the two sides represent the same region,
i.e., the two sentences are logically equivalent.) Now by two applications of
(2) to (1) we have

(3) pr(D|C) = pr(D|D ∧ C)pr(D) + pr(D|¬D ∧ C)pr(¬D)

But as D ∧ C and ¬(D ∧ C) respectively imply and contradict D, we have
pr(D|D ∧ C) = 1 and pr(D|¬D ∧ C)) = 0. Therefore, (3) reduces to

(4) pr(D|C) = pr(D)

Conclusion: If ‘|’ were a connective (‘if’) satisfying (2), conditional prob-
abilities would not depend on on their conditions at all. That means that
‘pr(D|C)’ would be just a clumsy way of writing ‘pr(D)’. And it means that
pr(D|C) would come to the same thing as pr(D|¬C), and as pr(D|X) for
any other statement X.

That is David Lewis’s “trivialization result”. In proving it, the only as-
sumption needed about ‘if’ was the eqivalence (2) of ‘If X, then if C then D’
with ‘If X and C, then D’.9

1.6 Bayes’s Theorem

A well-known corollary of the product rule allows us to reverse the arguments
of the conditional probability function pr( | ) provided we multiply the result
by the ratio of the probabilities of those arguments in the original order.

Bayes’s Theorem (Probabilities). pr(H|D) = pr(D|H)× pr(H)

pr(D)

Proof. By the product rule, the right-hand side equals pr(D ∧H)/pr(D); by
the quotient rule, so does the left-hand side.

For many purposes Bayes’s theorem is more usefully applied to odds than
to probabilities. In particular, suppose there are two hypotheses, H and G,
to which observational data D are relevant. If we apply Bayes theorem for
probabilities to the conditional odds between H and G, pr(H|D)/pr(G|D),
the unconditional probability of D cancels out:

9Note that the result does not depend on assuming that ‘if’ means ‘or not’; no such
fancy argument is needed in order to show that pr(¬A ∨ B) = pr(B|A) only under very
special conditions. (Prove it!)
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Bayes’s Theorem (Odds).
pr(H|D)

pr(G|D)
=

pr(H)

pr(G)
× pr(D|H)

pr(D|G)

Terminological note. The second factor on the right-hand side of the
odds form of Bayes’s theorem is the “likelihood ratio.” In these terms
the odds form says:

Conditional odds = prior odds × likelihood ratio

Bayes’s theorem is often stated in a form attuned to cases in which you
have clear probabilities pr(H1), pr(H2), . . . for mutually incompatible, collec-
tively exhaustive hypotheses H1, H2, . . ., and have clear conditional probabil-
ities pr(D|H1), pr(D|H2), . . . for data D on each of them. For a countable
collection of such hypotheses we have an expression for the probability, given
D, of any one of them, say, Hi:

Bayes’s Theorem (Total Probabilities):10

pr(Hi|D) =
pr(Hi)pr(D|Hi)∑
j pr(Hj)pr(D|Hj)

Example. In the urn example (1.4), suppose a black ball is drawn. Was
it more probably drawn from urn 1 or urn 2? Let D = A black ball is drawn,
Hi = It came from urn i, and pr(Hi) = 1

2
. Here are two ways to go:

(1) Bayes’s theorem for total probabilities, pr(H1|D) =
1
2
· 3

4
1
2
· 3

4
+ 1

2
· 1

2

=
3

5
·

(2) Bayes’s theorem for odds,
pr(H1|D)

pr(H2|D)
=

1
2
1
2

×
3
4
2
4

=
3

2
·

These come to the same thing: Probability 3/5 = odds 3:2. Urn 1 is the
more probable source.

1.7 Independence

Definitions
• H1 ∧ . . . ∧Hn is a conjunction. The H’s are conjuncts.
• H1 ∨ . . . ∨Hn is a disjunction. The H’s are disjuncts.

10The denominator = pr(H1)pr(D|H1) + pr(H2)pr(D|H2) + · · · .



CHAPTER 1. PROBABILITY PRIMER 24

• For you, hypotheses are:
independent iff your probability for the conjunction of any two or more

is the product of your probabilities for the conjuncts;
conditionally independent givenG iff your conditional probability given

G for the conjunction of any two or more is the product of your conditional
probabilities given G for the conjuncts; and

equiprobable (or conditionally equiprobable given G) iff they have the
same probability for you (or the same conditional probability, given G).

Example 1, Rolling a fair die. Hi means that the 1 (“ace”) turns up
on roll number i. These Hi are both independent and equiprobable for you:
Your pr for the conjunction of any distinct n of them will be 1/6n.

Example 2, Coin & die, pr(head) =
1

2
, pr(1) =

1

6
, pr(head ∧ 1) =

1

12
;

outcomes of a toss and a roll are independent but not equiprobable.

Example 3, Urn of known composition. You know it containsN balls,
of which b are black, and that after a ball is drawn it is replaced and the
contents of the urn mixed. H1, H2, . . . mean: the first, second, . . . balls drawn
will be black. Here, if you think nothing fishy is going on, you will regard
the H’s as equiprobable and independent: pr(Hi) = b/N, pr(HiHj) = b2/N2

if i = j, pr(HiHjHk) = b3/N3 if i = j = k = i, and so on.

It turns out that three propositions H1, H2, H3 can be independent in pairs
but fail to be independent because pr(H1 ∧H2 ∧H3) =pr(H1)pr(H2)pr(H3).

Example 4. Two normal tosses of a normal coin. If we define Hi as
‘head on toss #i’ and D as ‘different results on the two tosses’ we find that
pr(H1 ∧H2) = pr(H1)pr(D) = pr(H2)pr(D) = 1

4
but pr(H1 ∧H2 ∧D) = 0.

Here is a useful fact about independence:

(1) If n propositions are independent, so are
those obtained by denying some or all of them.

To illustrate (1), think about case n = 3. Suppose H1, H2, H3 are indepen-
dent. Writing hi = pr(Hi), this means that the following four equations hold:

(a) pr(H1 ∧H2 ∧H3) = h1h2h3,

(b) pr(H1 ∧H2) = h1h2, (c) pr(H1 ∧H3) = h1h3, (d) pr(H2 ∧H3) = h2h3

Here, H1, H2,¬H3 are also independent. Writing h̄i = pr(¬Hi), this means:

(e) pr(H1 ∧H2 ∧ ¬H3) = h1h2h̄3,

(f) pr(H1 ∧H2) = h1h2, (g) pr(H1 ∧ ¬H3) = h1h̄3, (h) pr(H2 ∧ ¬H3) = h2h̄3
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Equations (e)− (h) follow from (a)− (d) by the rule for ‘but not’.

Example 5, (h) follows from (b). pr(H2 ∧¬H3) = h2h̄3 since, by ‘but
not’, the left-hand side = pr(H1)− pr(H1 ∧H2), which, by (b), = h1 − h1h2,
and this = h1(1− h2) = h1h̄2.

A second useful fact follows immediately from the quotient rule:

(2) If pr(H1) > 0, then H1 and H2 are
independent iff pr(H2|H1) = pr(H2).

1.8 Objective Chance

It is natural to think there is such a thing as real or objective probability
(“chance”, for short) in contrast to merely judgmental probability.

example 1, The Urn. An urn contains 100 balls, of which an unknown
number n are of the winning color — green, say. You regard the drawing as
honest in the usual way. Then you think the chance of winning is n/100. If all
101 possible values of n are equiprobable in your judgment, then your prior
probability for winning on any trial is 50%, and as you learn the results of
more and more trials, your posterior odds between any two possible compo-
sitions of the urn will change from 1:1 to various other values, even though
you are sure that the composition itself does not change.

“The chance of winning is 30%.” What does that mean? In the urn
example, it means that n = 30. How can we find out whether it is true or
false? In the urn example we just count the green balls and divide by the
total number. But in other cases—die rolling, horse racing, etc.—there may
be no process that does the “Count the green ones” job. In general, there
are puzzling questions about the hypothesis that the chance of H is p that
do not arise regarding the hypothesis H itself.

David Hume’s skeptical answer to those questions says that
chances are simply projections of robust features of judgmental probabili-
ties from our minds out into the world, whence we hear them clamoring to
be let back in. That is how our knowledge that the chance of H is p guar-
antees that our judgmental probability for H is p : the guarantee is really a
presupposition. As Hume sees it, the argument

(1) pr(the chance of H is p) = 1, so pr(H) = p
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is valid because our conviction that the chance of H is p is a just a firmly
felt commitment to p as our continuing judgmental probability for H.

What if we are not sure what the chance of H is, but think it may be p?
Here, the relevant principle (“Homecoming”) specifies the probability of H
given that its chance is p—except in cases where we are antecedently sure
that the chance is not p because, for some chunk (· · · · · ·) of the interval from
0 to 1, pr(the chance of H is inside the chunk) = 0.

Homecoming. pr(H| chance of H is p) = p unless p is
excluded as a possibile value, being in the interior of an
interval we are sure does not contain the chance of H :

0——· · · p · · ·—1

Note that when pr(the chance of H is p) = 1, homecoming validates
argument (1). The name ‘Homecoming’ is loaded with philosophical baggage.
‘Decisiveness’ would be a less tendentious name, acceptable to those who see
chances as objective features of the world, independent of what we may think.
The condition ‘the chance of H is p’ is decisive in that it overrides any other
evidence represented in the probability function pr. But a decisive condition
need not override other conditions conjoined with it to the right of the bar.
In particular, it will not override the hypothesis that H is true, or that H is
false. Thus, since pr(H|H ∧C) = 1 when C is any condition consistent with
H, we have

(2) pr(H|H∧ the chance of H is .3) = 1, not .3,

and that is no violation of decisiveness.

On the Humean view it is ordinary conditions, making no use of the
word ‘chance,’ that appear to the right of the bar in applications of the
homecoming principle, e.g., conditions specifying the composition of an urn.
Here, you are sure that if you knew n, your judgmental probability for the
next ball’s being green would be n%:

(3) pr(Green next |n of the hundred are green) = n%

Then in example 1 you take the chance of green next to be a magnitude,

ch(green next) =
number of green balls in the urn

total number of balls in the urn
,

which you can determine empirically by counting. It is the fact that for
you the ratio of green ones to all balls in the urn satisfies the decisiveness
condition that identifies n% as the chance of green next, in your judgment.
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On the other hand, the following two examples do not respond to that
treatment.

Example 2, the proportion of greens drawn so far. This won’t do
as your ch(green next) because it lacks the robustness property: on the
second draw it can easily change from 0 to 1 or from 1 to 0, and until the
first draw it gives the chance of gree next the unrevealing form of 0/0.

Example 3, The Loaded Die. Suppose H predicts ace on the next toss.
Perhaps you are sure that if you understood the physics better, knowledge
of the mass distribution in the die would determine for you a definite robust
judgmental probability of ace next: you think that if you knew the physics,
then you would know of an f that makes this principle true:

(4) pr(Ace next | The mass distribution is M) = f(M)

But you don’t know the physics; all you know for sure is that f(M) = 1
6

in case M is uniform.

When we are unlucky in this way—when there is no decisive physical
parameter for us—there may still be some point in speaking of the chance
of H next, i.e., of a yet-to-be-identified physical parameter that will be de-
cisive for people in the future. In the homecoming condition we might read
‘chance of H’ as a place-holder for some presently unavailable description of
a presently unidentified physical parameter. There is no harm in that—as
long as we don’t think we are already there.

In examples 1 and 2 it is clear to us what the crucial physical param-
eter, X, can be, and we can specify the function, f , that maps X into the
chance: X can be n/100, in which case f is the identity function, f(X) = X;
or X can be n, with f(X) = n/100. In the die example we are clear about
the parameter X, but not about the function f . And in other cases we are
also unclear about X, identifying it in terms of its salient effect (“blood poi-
soning” in the following example), while seeking clues about the cause.

Example 4, Blood Poisoning.

‘At last, early in 1847, an accident gave Semmelweis the de-
cisive clue for his solution of the problem. A colleague of his,
Kolletschka, received a puncture wound in the finger, from the
scalpel of a student with whom he was performing an autopsy,
and died after an agonizing illness during which he displayed the
same symptoms that Semmelweis had observed in the victims of
childbed fever. Although the role of microorganisms in such in-
fections had not yet been recognized at that time, Semmelweis
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realized that “cadaveric matter” which the student’s scalpel had
introduced into Kolletschchka’s blood stream had caused his col-
league’s fatal illness. And the similarities between the course of
Kolletschchka’s disease and that of the women in his clinic led
Semmelweis to the conclusion that his patients had died of the
same kind of blood poisoning’11

But what is the common character of the X’s that we had in the first two
examples, and that Semmelweis lacked, and of the f ’s that we had in the
first, but lacked in the other two? These questions belong to pragmatics, not
semantics; they concern the place of these X’s and f ’s in our processes of
judgment; and their answers belong to the probability dynamics, not statics.
The answers have to do with invariance of conditional judgmental probabili-
ties as judgmental probabilities of the conditions vary. To see how that goes,
let’s reformulate (4) in general terms:

(4) Staying home. pr(H|X = a) = f(a) if a is not in the
interior of an interval that surely contains no values of X.

Here we must think of pr as a variable whose domain is a set of probability
assignments. These may assign different values to the condition X = a; but,
for each H and each a that is not in an excluded interval, they assign the
same value, f(a), to the conditional probability of H given a.

1.9 Supplements

1 (1) Find a formula for pr(H1 ∨H2 ∨H3) in terms of probabilities of H’s
and their conjunctions.
(2) What happens in the general case, pr(H1 ∨H2 ∨ . . . ∨Hn)?

2 Exclusive ‘or’. The symbol “∨” stands for “or” in a sense that is
not meant to rule out the possibility that the hypotheses flanking it are both
true: H1 ∨ H2 = H1 ∨ H2 ∨ (H1 ∧ H2). Let us use symbol ∨ for “or” in an
exclusive sense: H1 ∨H2 = (H1 ∨H2) ∧ ¬(H1 ∧H2). Find formulas for
(1) pr(H1 ∨H2) and
(2) pr(H1 ∨H2 ∨H3)
in terms of probabilities of H’s and their conjunctions.
(3) Does H1 ∨H2∨H3 mean that exactly one of the three H’s is true? (No.)

11Hempel (1966), p. 4.
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What does it mean?
(4) What does H1 ∨ . . .∨Hn mean?

3 Diagnosis.12 The patient has a breast mass that her physician thinks is
probably benign: frequency of malignancy among women of that age, with
the same symptoms, family history, and physical findings, is about 1 in 100.
The physician orders a mammogram and receives the report that in the
radiologist’s opinion the lesion is malignant, i.e., the mammogram is positive.
Based on the available statistics, the physician’s probabilities for true and
false positive mammogram results were as follows, and her prior probability
for the patient’s having cancer was 1%. What will her conditional odds on
malignancy be, given the positive mammogram?

pr(row|column) Malignant Benign

+ mammogram 80% 10%
− mammogram 20% 90%

4 The Taxicab Problem.13 “A cab was involved in a hit-and-run accident
at night. Two cab companies, the Green and the Blue, operate in the city.
You are given the following data:
“(a) 85% of the cabs in the city are Green, 15% are Blue.
“(b) A witness identified the cab as Blue. The court tested the reliability
of the witness under the same circumstances that existed on the night of
the accident and concluded that the witness correctly identified each one
of the two colors 80% of the time and failed 20% of the time. What is the
probability that the cab involved in the accident was Blue rather than Green
[i.e., conditionally on the witness’s identification]?”

5 The Device of Imaginary Results.14 This is meant to help you identify
your prior odds—e.g., on the hypothesis “that a man is capable of extra-
sensory perception, in the form of telepathy. You may imagine an experiment
performed in which the man guesses 20 digits (between 0 and 9) correctly.
If you feel that this would cause the probability that the man has telepathic
powers to become greater than 1/2, then the [prior odds] must be assumed
to be greater than 10−20. . . . Similarly, if three consecutive correct guesses
would leave the probability below 1/2, then the [prior odds] must be less
than 10−3.”
Verify these claims about the prior odds.

12Adapted from Eddy (1982).
13Kahneman, Slovic and Tversky (1982), pp. 156-158.
14From I. J. Good (1950) p. 35.
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6 The Rare Disease.15 “You are suffering from a disease that, according to
your manifest symptoms, is either A or B. For a variety of demographic rea-
sons disease A happens to be 19 times as common as B. The two diseases are
equally fatal if untreated, but it is dangerous to combine the respective ap-
propriate treatments. Your physician orders a certain test which, through the
operation of a fairly well understood causal process, always gives a unique di-
agnosis in such cases, and this diagnosis has been tried out on equal numbers
of A and B patients and is known to be correct on 80% of those occasions.
The tests report that you are suffering from disease B. Should you never-
theless opt for the treatment appropriate to A, on the supposition that the
probability of your suffering from A is 19/23? Or should you opt for the treat-
ment appropriate to B, on the supposition [. . .] that the probability of your
suffering from B is 4/5? It is the former opinion that would be irrational for
you. Indeed, on the other view, which is the one espoused in the literature,
it would be a waste of time and money even to carry out the tests, since
whatever their results, the base rates would still compel a more than 4/5
probability in favor of disease A. So the literature is propagating an analysis
that could increase the number of deaths from a rare disease of this kind.”
Diaconis and Freedman (1981, pp. 333-4) suggest that “the fallacy of the
transposed conditional” is being committed here, i.e., confusion of the fol-
lowing quantities—the second of which is the true positive rate of the test
for B: pr(It is B|It is diagnosed as B), pr(It is diagnosed as B|It is B).
Use the odds form of Bayes’s theorem to verify that if your prior odds on A
are 19:1 and you take the true positive rate (for A, and for B) to be 80%,
your posterior probability for A should be 19/23.

7 On the Credibility of Extraordinary Stories.16

“There are, broadly speaking, two different ways in which we may suppose
testimony to be given. It may, in the first place, take the form of a reply to
an alternative question, a question, that is, framed to be answered by yes or
no. Here, of course, the possible answers are mutually contradictory, so that
if one of them is not correct the other must be so: —Has A happened, yes or
no?” . . .
“On the other hand, the testimony may take the form of a more original
statement or piece of information. Instead of saying, Did A happen? we
may ask, What happened? Here if the witness speaks the truth he must be
supposed, as before, to have but one way of doing so; for the occurrence of
some specific event was of course contemplated. But if he errs he has many
ways of going wrong” . . .

15L. J. Cohen (1981), see p. 329.
16Adapted from pp. 409 ff. of Venn(1888, 1962).
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(a) In an urn with 1000 balls, one is green and the rest are red. A ball is
drawn at random and seen by no one but a slightly colorblind witness, who
reports that the ball was green. What is your probability that the witness
was right on this occasion, if his reliability in distinguishing red from green
is .9, i.e., if pr(He says it is X|It is X) = .9 when X = Red and when X =
Green?
(b) “We will now take the case in which the witness has many ways of going
wrong, instead of merely one. Suppose that the balls were all numbered,
from 1 to 1000, and the witness knows this fact. A ball is drawn, and he tells
me that it was numbered 25, what is the probability that he is right?” In
answering you are to “assume that, there being no apparent reason why he
should choose one number rather than another, he will be likely to announce
all the wrong ones equally often.”
What is now your probability that the 90% reliable witness was right?

8.1 The Three Cards. One is red on both sides, one is black on both sides,
and the other is red on one side and black on the other. One card is drawn
blindly and placed on a table. If a red side is up, what is the probability that
the other side is red too?

8.2 The Three Prisoners. An unknown two will be shot, the other freed.
Alice asks the warder for the name of one other than herself who will be
shot, explaining that as there must be at least one, the warder won’t really
be giving anything away. The warder agrees, and says that Bill will be shot.
This cheers Alice up a little: Her judgmental probability for being shot is
now 1/2 instead of 2/3. Show (via Bayes’s theorem) that
(a) Alice is mistaken if she thinks the warder is as likely to say ‘Clara’ as
‘Bill’ when he can honestly say either; but that
(b) She is right if she thinks the warder will say ‘Bill’ when he honestly can.

8.3 Monty Hall. As a contestant on a TV game show, you are invited to
choose any one of three doors and receive as a prize whatever lies behind it—
i.e., in one case, a car, or, in the other two, a goat. When you have chosen,
the host opens one of the other two doors, behind which he knows there is a
goat, and offers to let you switch your choice to the third door. Would that
be wise?

9 Causation vs. Diagnosis.17 “Let A be the event that before the end of
next year, Peter will have installed a burglar alarm in his home. Let B denote
the event that Peter’s home will have been burgled before the end of next
year.

17From p. 123 of Kahneman, Slovic and Tversky eds., (1982).
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“Question: Which of the two conditional probabilities, pr(A|B) or pr(A|¬B),
is higher?
“Question: Which of the two conditional probabilities, pr(BA) or pr(B|¬A),
is higher?
“A large majority of subjects (132 of 161) stated that pr(A|B) > pr(A|¬B)
and that pr(B|A) < pr(B|¬A), contrary to the laws of probability.”
Substantiate this critical remark by showing that the following is a law of
probability.
pr(A|B) > pr(A|¬B) iff pr(B|A) > pr(B|¬A)

10 Prove the following, assuming that conditions all have probability > 0.

a If A implies D then pr(A|D) = pr(A)/pr(D).

b If D implies A then pr(¬A|¬D) = pr(¬A)/pr(¬D). (“TJ’s Lemma”)

c pr(C|A ∨B) is between pr(C|A) and pr(C|B) if pr(A ∧B) = 0.

11 Sex Bias at Berkeley?18 In the fall of 1973, when 8442 men and 4321
women applied to graduate departments at U. C. Berkeley, about 44% of
the men were admitted, but only about 35% of the women. It looked like
sex bias against women. But when admissions were tabulated for the sep-
arate departments—as below, for the six most popular departments, which
together accounted for over a third of all the applicants—there seemed to be
no such bias on a department-by-department basis. And the tabulation sug-
gested an innocent one-sentence explanation of the overall statistics. What
was it?
Hint: What do the statistics indicate about how hard the different depart-
ments were to get into?

Department A admitted 62% of 825 male applicants, 82% of 108 females.
Department B admitted 63% of 560 male applicants, 68% of 25 females.
Department C admitted 37% of 325 male applicants, 34% of 593 females.
Department D admitted 33% of 417 male applicants, 35% of 375 females.
Department E admitted 28% of 191 male applicants, 24% of 393 females.
Department F admitted 6% of 373 male applicants, 7% of 341 females.

12 The Birthday Problem. Of twenty-three people selected at random,
what is the probability that at least two have the same birthday?

Hint :
365

365
× 364

365
× 363

365
· · · (23 factors) ≈ .49

13 How would you explain the situation to Méré?
“M. de Méré told me he had found a fallacy in the numbers for the following

18Freedman, Pisani and Purves (1978) pp. 12-15.
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reason: With one die, the odds on throwing a six in four tries are 671:625.
With two dice, the odds are against throwing a double six in four tries. Yet 24
is to 36 (which is the number of pairings of the faces of two dice) as 4 is to 6
(which is the number of faces of one die). This is what made him so indignant
and made him tell everybody that the propositions were inconsistent and
that arithmetic was self-contradictory; but with your understanding of the
principles, you will easily see that what I say is right.” (Pascal to Fermat, 29
July 1654)

14 Independence, sec. 1.7.
(a) Complete the proof, begun in example 5, of the case n = 3 of fact (1).
(b) Prove fact (1) in the general case. Suggestion: Use mathematical induction
on the number f = 0, 1, . . . of denied H’s, where 2 ≤ n = t+ f .

15 Sample Spaces, sec. 1.3. The diagrammatic method of this section is an
agreeable representation of the set-theoretical models in which propositions
are represented by sets of items called ‘points’—a.k.a. (“possible”) ‘worlds’
or ‘states’ (“of nature”). If � = Ω = the set of all such possible states in a
particular set-theoretical model then ω ∈ H ⊆ Ω means that the proposition
H is true in possible state ω. To convert such an abstract model into a sample
space it is necessary to specify the intended correspondence between actual
or possible happenings and members and subsets of Ω. Not every subset
of Ω need be counted as a proposition in the sample space, but the ones
that do count are normally assumed to form a Boolean algebra. A Boolean
“σ-algebra” is a B.A. which is closed under all countable disjunctions (and,
therefore, conjunctions)—not just the finite ones. A probability space is a
sample space with a countably additive probability assignment to the Boolean
algebra B of propositions.
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Chapter 2

Testing Scientific Theories

Christian Huyghens gave this account of the scientific method in the intro-
duction to his Treatise on Light (1690):

“. . . whereas the geometers prove their propositions by fixed and
incontestable principles, here the principles are verified by the
conclusions to be drawn from them; the nature of these things not
allowing of this being done otherwise. It is always possible thereby
to attain a degree of probability which very often is scarcely less
than complete proof. To wit, when things which have been demon-
strated by the principles that have been assumed correspond per-
fectly to the phenomena which experiment has brought under
observation; especially when there are a great number of them,
and further, principally, when one can imagine and foresee new
phenomena which ought to follow from the hypotheses which one
employs, and when one finds that therein the fact corresponds to
our prevision. But if all these proofs of probability are met with
in that which I propose to discuss, as it seems to me they are,
this ought to be a very strong confirmation of the success of my
inquiry; and it must be ill if the facts are not pretty much as I
represent them.”

In this chapter we interpret Huyghens’s methodology and extend it to the
treatment of certain vexed methodological questions — especially, the Duhem-
Quine problem (“holism”, sec. 2.6) and the problem of old evidence (sec 2.7).

35
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2.1 Quantifications of Confirmation

The thought is that you see an episode of observation, experiment or rea-
soning as confirming or infirming a hypotheses to a degree that depends on
whether your probability for it increases or decreases during the episode, i.e.,
depending on whether your posterior probability, new(H), is greater or less
than your prior probability, old(H). Your

Probability Increment, new(H)− old(H),

is one measure of that change—positive for confirmation, negative for infir-
mation. Other measures are the probability factor and the odds factor, in both
of which the turning point between confirmation and infirmation is 1 instead
of 0. These are the factors by which old probabilities or odds are multiplied
to get the new probabilities or odds.

Probability Factor: π(H) =df
new(H)

old(H)

By your odds on one hypothesis against another—say, on G against an al-
ternative H—is meant the ratio pr(G)/pr(H) of your probability of G to
your probability of H; by your odds simply “on G” is meant your odds on G
against ¬G:

Odds on G against H =
pr(G)

pr(H)

Odds on G =
pr(G)

pr(¬G)

Your “odds factor”—or, better, “Bayes factor”—is the factor by which your
old odds can be multiplied to get your new odds:

Bayes factor (odds factor):

β(G : H) =
new(G)

new(H)
/
old(G)

old(H)
=

π(G)

π(H)

Where updating old �→ new is by conditioning on D, your Bayes factor =
your old likelihood ratio, old(D|G) : old(D|H). Thus,

β(G : H) =
old(D|G)

old(D|H)
when new( ) = old( |D).
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A useful variant of the Bayes factor is its logarithm, dubbed by I. J. Good1

the “weight of evidence”:

w(G : H) =df log β(G : H)

As odds vary from 0 to ∞, their logarithms vary from −∞ to +∞. High
probabilities (say, 100/101 and 1000/1001) correspond to widely spaced odds
(100:1 and 1000:1); but low probabilities (say, 1/100 and 1/1000) correspond
to odds (1:99 and 1:999) that are roughly as cramped as the probabilities.
Going from odds to log odds moderates the spread at the high end, and treats
high and low symmetrically. Thus, high odds 100:1 and 1000:1 become log
odds 2 and 3, and low odds 1:100 and 1:1000 become log odds -2 and -3.

A. N. Turing was a playful, enthusiastic advocate of log odds, as his
wartime code-breaking colleague I. J. Good reports:

“Turing suggested . . . that it would be convenient to take over
from acoustics and electrical engineering the notation of bels and
decibels (db). In acoustics, for example, the bel is the logarithm
to base 10 of the ratio of two intensities of sound. Similarly, if
f [our β] is the factor in favour of a hypothesis, i.e., the ratio
of its final to its initial odds, then we say that the hypothesis
has gained log10 f bels or 10 log10 f db. This may be described
as the weight of evidence . . . and 10 log o db may be called the
plausibility corresponding to odds o. Thus . . . Plausibility gained
= weight of evidence”2

“The weight of evidence can be added to the initial log-odds
of the hypothesis to obtain the final log-odds. If the base of
the logarithms is 10, the unit of weight of evidence was called
a ban by Turing (1941) who also called one tenth of a ban a
deciban (abbreviated to db). I hope that one day judges, de-
tectives, doctors and other earth-ones will routinely weigh evi-
dence in terms of decibans because I believe the deciban is an
intelligence-amplifier.”3

“The reason for the name ban was that tens of thousands of
sheets were printed in the town of Banbury on which weights of

1I. J. Good, it Probability and the Weighing of Evidence, London, 1950, chapter 6.
2I. J. Good, op. cit., p. 63.
3I. J. Good, Good Thinking (Minneapolis, 1983), p. 132. Good means ‘inteligence’ in

the sense of ‘information’: Think MI (military intelligence), not IQ.
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evidence were entered in decibans for carrying out an important
classified process called Banburismus. A deciban or half-deciban
is about the smallest change in weight of evidence that is directly
perceptible to human intuition. . . . The main application of the
deciban was . . . for discriminating between hypotheses, just as in
clinical trials or in medical diagnosis.” [Good (1979) p. 394]4

Playfulness = frivolity. Good is making a serious proposal, for which he claims
support by extensive testing in the early 1940’s at Bletchley Park, where the
“Banburismus” language for hypothesis-testing was used in breaking each
day’s German naval “Enigma” code during World War II.5

2.2 Observation and Sufficiency

In this chapter we confine ourselves to the most familiar way of updating
probabilities, that is, conditioning on a statement when an observation as-
sures us of its truth.6

Example 1, Huyghens on light. LetH be the conjunction of Huyghens’s
hypotheses about light and let C represent one of the ‘new phenomena which
ought to follow from the hypotheses which one employs’.

If we know that C follows from H, and we can discover by observation
whether C is true or false, then we have the means to test H—more or

4I. J. Good, “A. M. Turing’s Statistical Work in World War II” (Biometrika 66 (1979,
393-6), p. 394.

5See Andrew Hodges, Alan Turing, the Enigma. (New York, 1983). The dead hand
of the British Official Secrets Act is loosening; see the A. N. Turing home page,
http://www.turing.org.uk/turing/, maintained by Andrew Hodges.

6In chapter 3 we consider updating by a generalization of conditioning, using statements
that an observation makes merely probable to various degrees.
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less conclusively, depending on whether we find that C is false or true. If C
proves false (shaded region), H is refuted decisively, for H ∧ ¬C = ⊥. On
the other hand, if C proves true, H’s probability changes from

old(H) =
area of the H circle

area of the � square
=

old(H)

1
to

new(H) = old(H|C) =
area of the H circle

area of the C circle
=

old(H)

old(C)

so that the probability factor is

π(H) =
1

old(C)

It is the antecedently least probable conclusions whose unexpected verifi-
cation raises H’s probability the most.7 The corollary to Bayes’s theorem in
section 1.6 generalizes this result to cases where pr(C|H) < 1.

Before going on, we note a small point that will loom larger in chapter 3:
In case of a positive observational result it may be inappropriate to update
by conditioning on the simple statement C, for the observation may provide
further information which overflows that package. In example 1 this problem
arises when the observation warrants a report of form C∧E, which would be
represented by a subregion of the C circle, with old(C ∧ E) < old(C). Here
(unless there is further overflow) the proposition to condition on is C ∧ E,
not C. But things can get even trickier, as in this homely jellybean example:

Example 2, The Green Bean.8

H, This bean is lime-flavored. C, This bean is green.
You are drawing a bean from a bag in which you know that half of the beans
are green, all the lime-flavored ones are green, and the green ones are equally
divided between lime and mint flavors. So before looking at the bean or
tasting it, your probabilities are these: old(C) = 1/2 = old(H|C); old(H) =
1/4. But although new(C) = 1, your probability new(H) for lime can drop
below old(H) = 1/4 instead of rising to old(H|C) = 1/2 in case you yourself
are the observer—for instance, if, when you see that the bean is green, you
also get a whiff of mint, or also see that the bean is of a special shade of green
that you have found to be associated with the mint-flavored ones. And here
there need be no further proposition E you can articulate that would make

7“More danger, more honor”: George Pólya, Patterns of Plausible Inference, 2nd ed.,
Princeton 1968, vol. 2, p. 126.

8Brian Skyrms [reference?]



CHAPTER 2. TESTING SCIENTIFIC THEORIES 40

C ∧ E the thing to condition on, for you may have no words for the telltale
shade of green, or for the whiff of mint. The difficulty will be especially
bothersome as an obstacle to collaboration with others who would like to
update their own prior probabilities by conditioning on your findings. (In
chapter 3 we will see what to do about it.)

2.3 Leverrier on Neptune

We now turn to a methodological story more recent than Huyghens’s:9

“On the basis of Newton’s theory, the astronomers tried to com-
pute the motions of [. . . ] the planet Uranus; the differences be-
tween theory and observation seemed to exceed the admissible
limits of error. Some astronomers suspected that these devia-
tions might be due to the attraction of a planet revolving beyond
Uranus’ orbit, and the French astronomer Leverrier investigated
this conjecture more thoroughly than his colleagues. Examining
the various explanations proposed, he found that there was just
one that could account for the observed irregularities in Uranus’s
motion: the existence of an extra-Uranian planet [sc., Neptune].
He tried to compute the orbit of such a hypothetical planet from
the irregularities of Uranus. Finally Leverrier succeeded in assign-
ing a definite position in the sky to the hypothetical planet [say,
with a 1 degree margin of error]. He wrote about it to another
astronomer whose observatory was the best equipped to exam-
ine that portion of the sky. The letter arrived on the 23rd of
September 1846 and in the evening of the same day a new planet
was found within one degree of the spot indicated by Leverrier.
It was a large ultra-Uranian planet that had approximately the
mass and orbit predicted by Leverrier.”

We treated Huyghens’s conclusion as a strict deductive consequence of his
principles. But Pólya made the more realistic assumption that Leverrier’s
prediction C (a bright spot near a certain point in the sky at a certain time)
was highly probable but not 100%, given his H (namely, Newton’s laws and
observational data about Uranus). So old(C|H) ≈ 1. And presumably the
rigidity condition was satisfied so that new(C|H) ≈ 1, too. Then verification

9George Pólya, op. cit., pp. 130-132.
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of C would have raised H’s probability by a factor ≈ 1/old(C), which is large
if the prior probability old(C) of Leverrier’s prediction was ≈ 0.

Pólya offers a reason for regarding 1/old(C) as at least 180, and perhaps
as much as 13131: The accuracy of Leverrier’s prediction proved to be better
than 1 degree, and the probability of a randomly selected point on a circle
or on a sphere being closer than 1 degree to a previously specified point is
1/180 for a circle, and about 1/13131 for a sphere. Favoring the circle is the
fact that the orbits of all known planets lie in the same plane (“the ecliptic”).
Then the great circle cut out by that plane gets the lion’s share of probability.
Thus, if old(C) is half of 1%, H’s probability factor will be about 200.

2.4 Dorling on the Duhem Problem

Skeptical conclusions about the possibility of scientific hypothesis-testing are
often drawn from the presumed arbitrariness of answers to the question of
which to give up—theory, or auxiliary hypothesis—when they jointly con-
tradict empirical data. The problem, addressed by Duhem in the first years
of the 20th century, was agitated by Quine in mid-century. As drawn by
some of Quine’s readers, the conclusion depends on his assumption that
aside from our genetical and cultural heritage, deductive logic is all we’ve
got to go on when it comes to theory testing. That would leave things pretty
much as Descartes saw them, just before the mid-17th century emergence
in the hands of Fermat, Pascal, Huyghens and others of the probabilistic
(“Bayesian”) methodology that Jon Dorling has brought to bear on various
episodes in the history of science.

The conclusion is one that scientists themselves generally dismiss, thinking
they have good reason to evaluate the effects of evidence as they do, but re-
garding formulation and justification of such reasons as someone else’s job—
the methodologist’s. Here is an introduction to Dorling’s work on that job,
using extracts from his important but still unpublished 1982 paper10—which

10Jon Dorling, ‘Bayesian personalism, the methodology of research programmes, and
Duhem’s problem’, Studies in History and Philosophy of Science 10(1979)177-187. More
along the same lines: Michael Redhead, ‘A Bayesian reconstruction of the methodology of
scientific research programmes,’ Studies in History and Philosophy of Science 11(1980)341-
347. Dorling’s unpublished paper from which excerpts appear here in sec. 3.6 - 3.9 is
‘Further illustrations of the Bayesian solution of Duhem’s problem’ (29 pp., photocopied,
1982). References here (‘sec. 4’, etc.) are to the numbered sections of that paper. Dor-
ling’s work is also discussed in Colin Howson and Peter Urbach, Scientific Reasoning: the
Bayesian approach (Open Court, La Salle, Illinois, 2nd ed., 1993).
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is reproduced in the web page “http:\\www.princeton.edu\~bayesway”
with Dorling’s permission.

The material is presented here in terms of odds factors. Assuming rigidity
relative to D, the odds factor for a theory T against an alternative theory S
that is due to learning that D is true will be the left-hand side of the following
equation, the right-hand side of which is called “the likelihood ratio”:

Bayes Factor = Likelihood Ratio:

old(T |D)/old(S|D)

old(T )/old(S)
=

old(D|T )

old(D|S)

The empirical result D is not generally deducible or refutable by T alone,
or by S alone, but in interesting cases of scientific hypothesis testing D is
deducible or refutable on the basis of the theory and an auxiliary hypothesis
A (e.g., the hypothesis that the equipment is in good working order). To
simplify the analysis, Dorling makes an assumption that can generally be
justified by appropriate formulation of the auxiliary hypothesis:

Prior Independence

old(A ∧ T ) = old(A)old(T ),

old(A ∧ S) = old(A)old(S).

Generally speaking, S is not simply the denial of T , but a definite scientific
theory in its own right, or a disjunction of such theories, all of which agree on
the phenomenon of interest, so that, as an explanation of that phenomenon,
S is a rival to T . In any case Dorling uses the independence assumption to
expand the right-hand side of the Bayes Factor = Likelihood Ratio equation:

β(T : S) =
old(D|T ∧ A)old(A) + old(D|T ∧ ¬A)old(¬A)

old(D|S ∧ A)old(A) + old(D|S ∧ ¬A)old(¬A)

To study the effect of D on A, he also expands β(A : Ā) with respect to T
(and similarly with respect to S, although we do not show that here):

β(A : ¬A) =
old(D|A ∧ T )old(T ) + old(D|A ∧ ¬T )old(¬T )

old(D|¬A ∧ T )old(T ) + old(D|¬A ∧ ¬T )old(¬T )
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2.4.1 Einstein/Newton, 1919

In these terms Dorling analyzes two famous tests that were duplicated, with
apparatus differing in seemingly unimportant ways, with conflicting results:
one of the duplicates confirmed T against S, the other confirmed S against
T. But in each case the scientific experts took the experiments to clearly
confirm one of the rivals against the other. Dorling explains why the experts
were right:

“In the solar eclipse experiments of 1919, the telescopic observa-
tions were made in two locations, but only in one location was
the weather good enough to obtain easily interpretable results.
Here, at Sobral, there were two telescopes: one, the one we hear
about, confirmed Einstein; the other, in fact the slightly larger
one, confirmed Newton. Conclusion: Einstein was vindicated, and
the results with the larger telescope were rejected.” (Dorling, sec.
4)

Notation
T : Einstein: light-bending effect of the sun
S: Newton: no light-bending effect of the sun
A: Both telescopes are working correctly
D: The conflicting data from both telescopes

In the odds factor β(T : S) above, old(D|T ∧ A) = old(D|S ∧ A) = 0
since if both telescopes were working correctly they would not have given
contradictory results. Then the first terms of the sums in numerator and
denominator vanish, so that the factors old(¬T ) cancel, and we have

β(T : S) =
old(D|T ∧ ¬A)

old(D|S ∧ ¬A)

“Now the experimenters argued that one way in which A might
easily be false was if the mirror of one or the other of the tele-
scopes had distorted in the heat, and this was much more likely to
have happened with the larger mirror belonging to the telescope
which confirmed S than with the smaller mirror belonging to the
telescope which confirmed T . Now the effect of mirror distortion
of the kind envisaged would be to shift the recorded images of
the stars from the positions predicted by T to or beyond those
predicted by S. Hence old(D|T ∧¬A) was regarded as having an
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appreciable value, while, since it was very hard to think of any
similar effect which could have shifted the positions of the stars in
the other telescope from those predicted by S to those predicted
by T, old(D|S ∧ ¬A) was regarded as negligibly small, hence the
result as overall a decisive confirmation of T and refutation of S.”

Thus the Bayes factor β(T : S) is very much greater than 1.

2.4.2 Bell’s Inequalities: Holt/Clauser

“Holt’s experiments were conducted first and confirmed the pre-
dictions of the local hidden variable theories and refuted those
of the quantum theory. Clauser examined Holt’s apparatus and
could find nothing wrong with it, and obtained the same results
as Holt with Holt’s apparatus. Holt refrained from publishing his
results, but Clauser published his, and they were rightly taken as
excellent evidence for the quantum theory and against hidden-
variable theories.” (Dorling, sec. 4)

Notation
T : Quantum theory
S: Disjunction of local hidden variable theories
A: Holt’s setup is reliable11 enough to distinguish T from S
D: The specific correlations predicted by T and contradicted by S are not
detected by Holt’s setup

The characterization of D yields the first two of the following equations. In
conjunction with the characterization of A it also yields old(D|T ∧¬A) = 1,
for if A is false, Holt’s apparatus was not sensitive enough to detect the
correlations that would have been present according to T ; and it yields
old(D|S ∧ ¬A) = 1 because of the wild improbability of the apparatus “hal-
lucinating” those specific correlations.12

old(D|T ∧ A) = 0,

old(D|S ∧ A) = old(D|T ∧ ¬A) = old(D|S ∧ ¬A) = 1

11This means: sufficiently sensitive and free from systematic error. Holt’s setup proved to
incorporate systematic error arising from tension in tubes for mercury vapor, which made
the glass optically sensitive so as to rotate polarized light. Thanks to Abner Shimony for
clarifying this. See also his supplement 6 in sec. 2.6.

12Recall Venn on the credibilty of extraordinary stories: Supplement 7 in sec. 1.11.
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Substituting these values, we have

β(T, S) = old(¬A)

Then with a prior probability of 4/5 for adequate sensitivity of Holt’s appara-
tus, the odds between quantum theory and the local hidden variable theories
shift strongly in favor of the latter, e.g., with prior odds 45:55 between T and
S, the posterior odds are only 9:55, a 14% probability for T.

Now why didn’t Holt publish his result?

Because the experimental result undermined confidence in his apparatus.
Setting ¬T = S in (2) because T and S were the only theories given any
credence as explanations of the results, and making the same substitutions
as in (4), we have

β(A : ¬A) = old(S)

so the odds on A fall from 4:1 to 2.2:1; the probability of A falls from 80%
to 69%. Holt is not prepared to publish with better than a 30% chance that
his apparatus could have missed actual quantum mechanical correlations; the
swing to S depends too much on a prior confidence in the experimental setup
that is undermined by the same thing that caused the swing.

Why did Clauser publish?
Notation
T : Quantum theory
S: Disjunction of local hidden variable theories
C: Clauser’s setup is reliable enough
E: The specific correlations predicted by T and contradicted by S are de-
tected by Clauser’s setup

Suppose that old(C) = .5. At this point, although old(A) has fallen
by 11%, both experimenters still trust Holt’s well-tried set-up better than
Clauser’s. Suppose Clauser’s initial results E indicate presence of the quan-
tum mechanical correlations pretty strongly, but still with a 1% chance of
error. Then E strongly favors T over R:13

β(T, S) =
old(E|T ∧ C)old(C) + old(E|T ∧ ¬C)old(¬C)

old(E|S ∧ C)old(C) + old(E|S ∧ ¬C)old(¬C)
= 50.5

13Numerically: 1×.5+.01×.5
.01×.5+.01×.5 = 50.5.
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Starting from the low 9:55 to which T ’s odds fell after Holt’s experiment,
odds after Clauser’s experiment will be 909:110, an 89% probability for T.
The result E boosts confidence in Clauser’s apparatus by a factor of

β(C : ¬C) =
old(E|C ∧ T )old(T ) + old(E|C ∧ S)old(S)

old(E|¬C ∧ T )old(T ) + old(E|¬C ∧ S)old(S)
= 15

This raises the initially even odds on C to 15:1, raises the probability from
50% to 94%, and lowers the 50% probability of the effect’s being due to
chance down to 6 or 7 percent.

2.4.3 Laplace/Adams

Finally, note one more class of cases: a theory T remains highly probable
although (with auxiliary hypothesis A) it is incompatible with subsequently
observed data D. With S = ¬T in the formulas for β in 2.4 and with
old(D|T ∧ A) = 0 (so that the first terms in the numerators vanish), and
writing

t =
old(D|T ∧ ¬A)

old(D|¬T ∧ ¬A)
, s =

old(D|¬T ∧ A)

old(D|¬T ∧ ¬A)
,

for two of the likelihood ratios, it is straightforward to show that

β(T : ¬T ) =
t

1 + (s× old odds on A)
,

β(A : ¬A) =
s

1 + (t× old odds on T )
,

β(T : A) =
t

s
× old(¬A)

old(¬T )
.

These formulas apply to

“a famous episode from the history of astronomy which clearly
illustrated striking asymmetries in ‘normal’ scientists’ reactions
to confirmation and refutation. This particular historical case
furnished an almost perfect controlled experiment from a philo-
sophical point of view, because owing to a mathematical error of
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Laplace, later corrected by Adams, the same observational data
were first seen by scientists as confirmatory and later as disconfir-
matory of the orthodox theory. Yet their reactions were strikingly
asymmetric: what was initially seen as a great triumph and of
striking evidential weight in favour of the Newtonian theory, was
later, when it had to be re-analyzed as disconfirmatory after the
discovery of Laplace’s mathematical oversight, viewed merely as a
minor embarrassment and of negligible evidential weight against
the Newtonian theory. Scientists reacted in the ‘refutation’ situ-
ation by making a hidden auxiliary hypothesis, which had previ-
ously been considered plausible, bear the brunt of the refutation,
or, if you like, by introducing that hypothesis’s negation as an ap-
parently ad hoc face-saving auxiliary hypothesis.” (Dorling, sec.
1)

Notation
T : The theory, Newtonian celestial mechanics
A: The hypothesis that disturbances (tidal friction, etc.) make a negligible
contribution to
D: The observed secular acceleration of the moon

Dorling argues on scientific and historical grounds for approximate numer-
ical values

t = 1, s =
1

50

The thought is that t = 1 because with A false, truth or falsity of T is
irrelevant to D, and t = 50s because in plausible partitions of ¬T into rival
theories predicting lunar accelerations, old(R|¬T ) = 1/50 where R is the
disjunction of rivals not embarrassed by D. Then for a theorist whose odds
are 3:2 on A and 9:1 on T (probabilities 60% for A and 90% for T ),

β(T : ¬T ) =
100

103

β(A : ¬A) =
1

500
β(T : A) = 200

Thus the prior odds 900:100 on T barely decrease, to 900:103; the new proba-
bility of T, 900/1003, agrees with the original 90% to two decimal places. But
odds on the auxiliary hypothesis A drop sharply, from prior 3:2 to posterior
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3/1000, i.e., the probability of A drops from 60% to about three tenths of
1%; odds on the theory against the auxiliary hypothesis increase by a factor
of 200, from a prior value of 3:2 to a posterior value of 300:1.

2.4.4 Dorling’s Conclusions

“Until recently there was no adequate theory available of how sci-
entists should change their beliefs in the light of evidence. Stan-
dard logic is obviously inadequate to solve this problem unless
supplemented by an account of the logical relations between de-
grees of belief which fall short of certainty. Subjective probability
theory provides such an account and is the simplest such ac-
count that we posess. When applied to the celebrated Duhem
(or Duhem-Quine) problem and to the related problem of the
use of ad hoc, or supposedly ad hoc, hypotheses in science, it
yields an elegant solution. This solution has all the properties
which scientists and philosophers might hope for. It provides stan-
dards for the validity of informal deductive reasoning comparable
to those which traditional logic has provided for the validity of
informal deductive reasoning. These standards can be provided
with a rationale and justification quite independent of any ap-
peal to the actual practice of scientists, or to the past success
of such practices.14 Nevertheless they seem fully in line with the
intuitions of scientists in simple cases and with the intuitions
of the most experienced and most successful scientists in trick-
ier and more complex cases. The Bayesian analysis indeed vindi-
cates the rationality of experienced scientists’ reactions in many
cases where those reactions were superficially paradoxical and
where the relevant scientists themselves must have puzzled over
the correctness of their own intuitive reactions to the evidence. It
is clear that in many such complex situations many less experi-
enced commentators and critics have sometimes drawn incorrect
conclusions and have mistakenly attributed the correct conclu-
sions of the experts to scientific dogmatism. Recent philosophical

14Here a long footnote explains the Putnam-Lewis Dutch book argument for condi-
tioning. Putnam stated the result, or, anyway, a special case, in a 1963 Voice of Amer-
ica Broadcast, ‘Probability and Confirmation’, reprinted in his Mathematics, Matter and
Method, Cambridge University Press (1975) 293-304. Paul Teller, ‘Conditionalization and
observation’, Synthese 26 (1973) 218-258, reports a general argument to that effect which
Lewis took to have been what Putnam had in mind.
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and sociological commentators have sometimes generalized this
mistaken reaction into a full-scale attack on the rationality of
men of science, and as a result have mistakenly looked for purely
sociological explanations for many changes in scientists’ beliefs,
or the absence of such changes, which were in fact, as we now see,
rationally de rigeur.’ (Dorling, sec. 5)

2.5 Old News Explained

In sec. 2.2 we analyzed the case Huyghens identified as the principal one in
his Treatise on Light: A prediction C long known to follow from a hypoth-
esis H is now found to be true. Here, if the rigidity condition is satisfied,
new(H) = old(H|C), so that the probability factor is π(H) = 1/old(C).

But what if some long-familiar phenomenon C, a phenomenon for which
old(C) = 1, is newly found to follow from H in conjunction with familiar
background information B about the solar system, and thus to be explained
by H ∧B? Here, if we were to update by conditioning on C, the probability
factor would be 1 and new(H) would be the same as old(H). No confirmation
here.15

Wrong, says Daniel Garber:16 The information prompting the update is
not that C is true, but that H ∧ B implies C. To condition on that news
Garber proposes to to enlarge the domain of the probability function old by
adding to it the hypothesis that C follows from H∧B together with all further
truth-functional compounds of that new hypothesis with the old domain.
Using some extension old∗ of old to the enlarged domain, we might then
have new(H) = old∗(H|H ∧B implies C). That is an attractive approach to
the problem, if it can be made to work.17

The alternative approach that we now illustrate defines the new assign-
ment on the same domain that old had. It analyzes the old �→ new transition

by embedding it in a larger process, ur
obs�→ old

expl�→ new, in which ur represents
an original state of ignorance of C’s truth and its logical relationship to H:

15This is what Clark Glymour has dubbed ‘the paradox of old evidence’: see his Theory
and Evidence, Princeton University Press, 1980.

16See his ‘Old evidence and logical omniscience in Bayesian confirmation theory’ in
Testing Scientific Theories, ed. John Earman, University of Minnesota Press, 1983. For
further discussion of this proposal see ‘Bayesianism with a human face’ in my Probability
and the Art of Judgment, Cambridge University Press, 1992.

17For a critique, see chapter 5 of John Earman’s Bayes or Bust? (MIT Press, 1992).
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Example 1, The perihelion of Mercury.
Notation.
H: GTR applied to the Sun-Mercury system
C: Advance of 43 seconds of arc per century18

In 1915 Einstein presented a report to the Prussian Academy of Sciences
explaining the then-known advance of approximately 43′′ per century in the
perihelion of Mercury in terms of his (“GTR”) field equations for gravitation.
An advance of 38′′ per century had been reported by Leverrier in 1859, due
to ‘some unknown action on which no light has been thrown’.19

“The only way to explain the effect would be ([Leverrier] noted) to
increase the mass of Venus by at least 10 percent, an inadmissible
modification. He strongly doubted that an intramercurial planet
[“Vulcan”], as yet unobserved, might be the cause. A swarm of
intramercurial asteroids was not ruled out, he believed.”

Leverrier’s figure of 38′′ was soon corrected to its present value of 43′′, but
the difficulty for Newtonian explanations of planetary astronomy was still

18Applied to various Sun-planet systems, the GTR says that all planets’ perihelions
advance, but that Venus is the only one for which that advance should be observable. This
figure for Mercury has remained good since its publication in 1882 by Simon Newcomb.

19‘Subtle is the Lord. . .’, the Science and Life of Albert Einstein, Abraham Pais, Oxford
University Press, 1982, p. 254.
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in place 65 years later, when Einstein finally managed to provide a general
relativistic explanation ‘without special assumptions’ (such as Vulcan)—an
explanation which was soon accepted as strong confirmation for the GTR.

In the diagram above, the left-hand path, ur �→ prn �→ new, represents an
expansion of the account in sec. 2.2 of Huyghens’s “principal” case (‘prn’ for
‘principal’), in which the confirming phenomenon is verified after having been
predicted via the hypothesis which its truth confirms. The “ur” probability
distribution, indicated schematically at the top, represents a time before C
was known to follow from H. To accomodate that discovery the ‘b’ in the
ur-distribution is moved left and added to the ‘a’ to obtain the top row
of the prn distribution. The reasoning has two steps. First: Since we now
know that H is true, C must be true as well. Therefore prn(H ∧ ¬C) is
set equal to 0. Second: Since implying a prediction that may well be false
neither confirms nor infirms H, the prn probability of H is to remain at its
ur-value even though the probability of H ∧¬C has been nullified. Therefore
the probability of H ∧ C is increased to prn(H ∧ C) = a + b. And this
prn distribution is where the Huyghens on light example in sec. 2.2 begins,
leading us to the bottom distribution, which assigns the following odds to H:

new(H)

new(¬H)
=

a+ b

c
.

In terms of the present example this new distribution is what Einstein
arrived at from the distribution labelled old, in which

old(H)

old(¬H)
=

a

c
.

The rationale is

commutativity:
The new distribution is the same, no matter if
the observation or the explanation comes first.

Now the Bayes factor gives the clearest view of the transition old(H) �→
new(H):20

20The approach here is taken from Carl Wagner, “Old evidence and new explanation III”,
PSA 2000 (J. A. Barrett and J. McK. Alexander, eds.), part 1, pp. S165-S175 (Proceedings
of the 2000 biennial meeting of the Philosophy of Science Association, supplement to
Philosophy of Science 68 [2001]), which reviews and extends earlier work, “Old evidence
and new explanation I” and “Old evidence and new explanation II” in Philosophy of
Science 64, No. 3 (1997) 677-691 and 66 (1999) 283-288.
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β(H : ¬H) =
a+ b

c
/
a

c
= 1 +

ur(¬C|H)

ur(C|H)
.

Thus the new explanation of old news C increases the odds on H by a factor
of (1 + the ur-odds against C, given H). Arguably, this is very much greater
than 1, since, in a notation in which C = C43 = an advance of (43 ± .5)′′/c
and similarly for other Ci’s, ¬C is a disjunction of very many “almost”
incompatible disjuncts: ¬C = . . . C38 ∨ C39 ∨ C40 ∨ C41 ∨ C42 ∨ C44 ∨ . . . .21

That’s the good news.22

And on the plausible assumption23 of ur-independence of H from C, the
formula for β becomes even simpler:

β(H : ¬H) = 1 +
ur(C̄)

ur(C)

The bad news is that ur and prn are new constructs, projected into a myth-
ical methodological past. But maybe that’s not so bad. As we have just
seen in a very sketchy way, there seem to be strong reasons for taking the
ratio ur(¬C|H)/ur(C|H) to be very large. This is clearer in the case of ur-
independence of H and C:

Example 2, Ur-independence. If Wagner’s independence assumption
is generally persuasive, the physics community’s ur-odds against C (“C43”)
will be very high, since, behind the veil of ur-ignorance, there is a large
array of Ci’s, which, to a first approximation, are equiprobable. Perhaps,
999 of them? Then β(H : ¬H) ≥ 1000, and the weight of evidence (2.1) is
w(H : ¬H) ≥ 3.

2.6 Supplements

1 “Someone is trying decide whether or not T is true. He notes that T is
a consequence of H. Later he succeeds in proving that H is false. How does
this refutation affect the probability of T?”24

2 “We are trying to decide whether or not T is true. We derive a sequence
of consequences from T , say C1, C2, C3, . . . . We succeed in verifying C1, then

21“Almost”: ur(Ci ∧ Cj) = 0 for any distinct integers i and j.
22“More [ur]danger, more honor.” See Pólya, quoted in sec. 2.2 here.
23Carl Wagner’s, again.
24This problem and the next are from George Pólya, ‘Heuristic reasoning and the theory

of probability’, American Mathematical Monthly 48 (1941) 450-465.
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C2, then C3, and so on. What will be the effect of these successive verifications
on the probablity of T?”

3 Fallacies of “yes/no” confirmation.25 Each of the following plau-
sible rules is unreliable. Find counterexamples—preferably, simple ones.
(a) If D confirms T, and T implies H, then D confirms H.
(b) If D confirms H and T separately, it must confirm their conjunction, TH.
(c) If D and E each confirm H, then their conjunction, DE, must also con-
firm H.
(d) If D confirms a conjunction, TH, then it cannot infirm each conjunct
separately.

4 Hempel’s ravens. It seems evident that black ravens confirm (H) ‘All
ravens are black’ and that nonblack nonravens do not. Yet H is logically
equivalent to ‘All nonravens are nonblack’. Use probabilistic considerations
to resolve this paradox of “yes/no” confirmation.26

5 Wagner III (sec 2.5).27 Carl Wagner extends his treatment of old
evidence newly explained to cases in which updating is by generalized condi-
tioning on a countable sequence C = 〈C1, C2, . . .〉 where none of the updated
probabilies need be 1, and to cases in which each of the C’s “follows only
probabilistically” from H in the sense that the conditional probabilities of
the C’s, given H, are high but < 1. Here we focus on the simplest case, in
which C has two members, C = 〈C,¬C〉. Where (as in the diagram in sec.
2.6) updates are not always from old to new, we indicate the prior and poste-
rior probability measures by a subscript and superscript: βpostprior. In particular,
we shall write βnewold (H : ¬H) explicitly, instead of β(H : ¬H) as in (3) and
(4) of sec. 2.6. And we shall use ‘β∗’ as shorthand: β∗ = βoldur (C : ¬C).

(a) Show that in the framework of sec. 2.6 commutativity is equivalent
to Uniformity:
βnewold (A : A′) = βprnur (A : A′) if A,A′ ∈ {H ∧C, H ∧¬C, ¬H ∧C, ¬H ∧¬C}.

(b) Show that uniformity holds whenever the updates ur �→ old and prn �→
new are both by generalized conditioning.

25These stem from Carl G. Hempel’s ‘Studies in the logic of confirmation’, Mind 54
(1945) 1-26 and 97-121, which is reprinted in his Aspects of Scientific Explanation, The
Free Press, New York, 1965.

26The paradox was first floated (1937) by Carl G. Hempel, in an abstract form: See
pp. 50-51 of his Selected Philosophical Essays, Cambridge University Press, 2000. For the
first probabilistic solution, see “On confirmation” by Janina Hosiasson-Lindenbaum, The
Journal of Symbolic Logic 5 (1940) 133-148. For a critical survey of more recent treatments,
see pp. 69-73 of John Earman’s Bayes or Bust?

27This is an easily detatchable bit of Wagner’s “Old evidence and new explanation III”
(cited above in sec. 3.6).
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Now verify that where uniformity holds, so do the following two formulas:

(c) βnewur (H : ¬H) =
(β∗ − 1)prn(C|H) + 1

(β∗ − 1)prn(C|¬H) + 1

(d) βoldur (H : ¬H) =
(β∗ − 1)ur(C|H) + 1

(β∗ − 1)ur(C|¬H) + 1

And show that, given uniformity,

(e) if H and C are ur-independent, then old(H) = ur(H) and, therefore,

(f) βnewold (H : ¬H) =
(β∗ − 1)prn(C|H) + 1

(β∗ − 1)prn(C|¬H) + 1
, so that

(g) Given uniformity, if H and C are ur-independent then

(1) βnewold (H : ¬H) depends only on β∗, prn(C|H) and prn(C|¬H);

(2) if β > 1 and prn(C|H) > prn(C|¬H), then βnewold (H : ¬H) > 1;

(3) βnewold (H : ¬H) → prn(C|H)

prn(C|¬H)
as β →∞.

6 Shimony on Holt-Clauser.28 “Suppose that the true theory is local
hidden variables, but Clauser’s apparatus [which supported QM] was faulty.
Then you have to accept that the combination of systematic and random
errors yielded (within the rather narrow error bars) the quantum mechanical
prediction, which is a definite number. The probability of such a coincidence is
very small, since the part of experimental space that agrees with a numerical
prediction is small. By contrast, if quantum mechanics is correct and Holt’s
apparatus is faulty, it is not improbable that results in agreement with Bell’s
inequality (hence with local hidden variables theories) would be obtained,
because agreement occurs when the relevant number falls within a rather
large interval. Also, the errors would usually have the effect of disguising
correlations, and the quantum mechanical prediction is a strict correlation.
Hence good Bayesian reasons can be given for voting for Clauser over Holt,
even if one disregards later experiments devised in order to break the tie.”

Compare: Relative ease of the Rockies eventually wearing down to Adiron-
dacks size, as against improbability of the Adirondacks eventually reaching
the size of the Rockies.

28Personal communication, 12 Sept. 2002.



Chapter 3

Probability Dynamics;
Collaboration

We now look more deeply into the matter of learning from experience, where
a pair of probability assignments represents your judgments before and after
you change your mind in response to the result of experiment or observation.
We start with the simplest, most familiar mode of updating, which will be
generalized in sec. 3.2 and applied in sec. 3.3 and 3.4 to the problem of
learning from other people’s experience-driven probabilistic updating.

3.1 Conditioning

Suppose your judgments were once characterized by an assignment (“old”)
which describes all of your conditional and unconditional probabilities as
they were then. And suppose you became convinced of the truth of some data
statement D. That would change your probabilistic judgments; they would
no longer corrrespond to your prior assignment old, but to some posterior
assignment new, where you are certain of D’s truth.

certainty: new(D) = 1

How should your new probabilities for hypotheses H other than D be related
to your old ones?

The simplest answer goes by the name of “conditioning” (or “condition-
alization”) on D.

55
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conditioning: new(H) = old(H|D)

This means that your new unconditional probability for any hypothesis H
will simply be your old conditional probability for H given D.

When is it appropriate to update by conditioning on D? It is easy to
see—once you think of it—that certainty about D is not enough.

Example 1, The Red Queen. You learn that a playing card, drawn
from a well-shuffled, standard 52-card deck, is a heart: your new(♥) = 1.
Since you know that all hearts are red, this means that your new(red) = 1
as well. But since old(Queen ∧♥|♥) = 1

13
whereas old(Queen ∧♥|red) = 1

26
,

you will have different new probabilities for the card’s being the Queen of
hearts, depending on which certainty you update on, ♥ or red.

Of course, in example 1 we are in no doubt about which certainty you
should condition on: it is the more informative one, ♥. And if what you
actually learned was that the card was a court card as well as a heart,
then that is what you ought to update on, so that your new(Q ∧ ♥) =
old(Q∧♥|(Ace∨King∨Queen)∧♥)) = 1

3
. But what if—although the thing

you learned with certainty was indeed that the card was a heart—you also
saw something you can’t put into words, that gave you reason to suspect,
uncertainly, that it was a court card?

Example 2, A brief glimpse determines your new probabilities as 1/20
for each of the ten numbered hearts, and as 1/6 for each of the J, K and Q.
Here, where some of what you have learned is just probabilistic, conditioning
on your most informative new certainty does not take all of your information
into account. In sec. 3.2 we shall see how you might take such uncertain in-
formation into account; but meanwhile, it is clear that ordinary conditioning
is not always the way to go.

What is the general condition under which it makes sense for you to plan
to update by conditioning on D if you should become sure that D is true?
The answer is confidence that your conditional probabilities given D will not
be changed by the experience that makes you certain of D’s truth.

Invariant conditional probabilities:

(1) For all H, new(H|D) = old(H|D)

Since new(H|D) = new(H) when new(D) = 1, it is clear that certainty and
invariance together imply conditioning. And conversely, conditioning implies
both certainty and invariance.1

1To obtain Certainty, set H = D in Conditioning. Now invariance follows from Condi-
tioning and Certainty since newH = new(H|D) when newD = 1.
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An equivalent invariance is that of your unconditional odds between dif-
ferent ways in which D might be true.

Invariant odds:

(2) If A and B each imply D,
new(A)

new(B)
=

old(A)

old(B)
.

And another is invariance of the “probability factors” π(A) by which your
old probabilities of ways of D’s being true can be multiplied in order to get
their new probabilities.

Invariant probability factors:

(3) If A implies D then π(A) = π(D)

— where π(A) =df
new(A)

old(A)
.

Exercise. Show that (1) implies (3), which implies (2), which implies (1).

There are special circumstances in which the invariance condition depend-
ably holds:

Example 3, The Statistician’s Stooge.2 Invariance will surely hold in
the variant of example 1 in which you do not see the card yourself, but have
arranged for a trusted assistant to look at it and tell you simply whether or
not is is a heart, with no further information. Under such conditions your
unconditional probability that the card is a heart changes to 1 in a way that
cannot change any of your conditional probabilities, given ♥.

3.2 Generalized Conditioning3

Certainty is quite demanding. It rules out not only the far-fetched uncer-
tainties associated with philosophical skepticism, but also the familiar uncer-
tainies that affect real empirical inquiry in science and everyday life. But it
is a condition that turns out to be dispensible: As long as invariance holds,

2I. J. Good’s term.
3Also known as probability kinematics and Jeffrey conditioning. For a little more about

this, see Persi Diaconis and Sandy Zabell, ‘Some alternatives to Bayes’s rule’ in Informa-
tion Pooling and Group Decision Making, Bernard Grofman and Guillermo Owen (eds.),
JAI Press, Greenwich, Conn. and London, England, pp. 25-38. For much more, see ‘Up-
dating subjective probability’ by the same authors, Journal of the American Statistical
Association 77(1982)822-830.
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updating is valid by a generalization of conditioning to which we now turn.
We begin with the simplest case, of a yes/no question.

If invariance holds relative to each answer (D,¬D) to a yes/no question,
and something makes you (say) 85% sure that the answer is ‘yes’, a way of
updating your probabilities is still available for you. Invariance with respect
to both answers means that for each hypothesis, H, new(H|D) = old(H|D)
and new(H|¬D) = old(H|¬D). The required updating rule is easily obtained
from the law of total probability in the form

new(H) = new(H|D)new(D) + new(H|¬D)new(¬D).

Rewriting the two conditional probabilities in this equation via invariance
relative to D and to ¬D, we have the following updating scheme:

new(H) = old(H|D)new(D) + old(H|¬D)new(¬D)

More generally, with any countable partition of answers, the applicable
rule of total probability has one term on the right for each member of the
partition. If the invariance condition holds for each answer, Di, we have the
updating scheme new(H) = old(H|D1)new(D1) + old(H|D2)new(D2) + . . .,

“Probability Kinematics”:

new(H) =
n∑
i=1

old(H|Di)new(Di).

This is equivalent to invariance with respect to every answer: new(H|Di) =
old(H|Di) for i = 1, . . . , n.

Example 4, A consultant’s prognosis. In hopes of settling on one of
the following diagnoses, Dr. Jane Doe, a histopathologist, conducts a micro-
scopic examination of a section of tissue surgically removed from a tumor.
She is sure that exactly one of the three is correct.

D1 = Islet cell carcinoma, D2 = Ductal cell ca, D3 = Benign tumor.

Here n = 3, so (using accents to distinguish her probability assignments from
yours) her new′(H) for the prognosis H of 5-year survival will be

old′(H|D1)new
′(D1) + old′(H|D2)new

′(D2) + old′(H|D3)new
′(D3).
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Suppose that, in the event, the examination does not drive her probability
for any of the diagnoses to 1, but leads her to assign new′(Di) = 1

3
, 1

6
, 1

2
for

i = 1, 2, 3. Suppose, further, that her conditional probabilities for H given
the diagnoses are unaffected by her examination: old′(H|Di) = new′(H|Di) =
4
10
, 6

10
, 9

10
. Then by probability kinematics her new probability for 5 year sur-

vival will be a weighted average new′(H) = 41
60

of the values that her old′(H)
would have had if she had been sure of the three diagnoses, where the weights
are her new probabilities for those diagnoses.

Note that the calculation of new′(H) makes no use of Dr Doe’s old prob-
abilities for the diagnoses. Indeed, her prior old′ may have been a partially
defined function, assigning no numerical values at all to the Di’s. Certainly
her new′(Di)’s will have arisen through an interaction of features of her prior
mental state with her new experiences at the microscope. But the results
new′(Di) of that interaction are data for the kinematical formula for updat-
ing old′(H); the formula itself does not compute those results.

3.3 Probabilistic Observation Reports4

We now move outside the native ground of probability kinematics into a re-
gion where your new probabilities for the Di are to be influenced by someone
else’s probabilistic observation report. You are unlikely to simply adopt such
an observer’s updated probabilities as your own, for they are necessarily a
confusion of what the other person has gathered from the observation it-
self, which you would like to adopt as your own, with that person’s prior
judgmental state, for which you may prefer to substitute your own.

We continue in the medical setting. Suppose you are a clinical oncologist
who wants to make the best use you can of the observations of a histopathol-
ogist whom you have consulted. Notation: old and new are your probability
assignments before and after the histopathologist’s observation has led her
to change her probability assignment from old′ to new′.

If you do simply adopt the expert’s new probabilities for the diagnoses,
setting your new(Di) = new(Di) for each i, you can update by probability
kinematics even if you had no prior diagnostic opinions old(Di) of your own;
all you need are her new new′(Di)’s and your invariant conditional prog-
noses old(H|Di). But suppose you have your own priors, old(Di), which you

4See Wagner (2001) and Wagner, ‘Probability Kinematics and Exchangeability’, Phi-
losophy of Science 69 (2002) 266-278.
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take to be well-founded, and although you have high regard for the patholo-
gist’s ability to interpret histographic slides, you view her prior probabilities
old′(Di) for the various diagnoses as arbitrary and uninformed: She has no
background information about the patient, but for the purpose of formulating
her report she has adopted certain numerically convenient priors to update
on the basis of her observations. It is not from the new′(Di) themselves but
from the updates old′(Di) �→ new′(Di) that you must extract the information
contributed by her observation. How?

Here is a way: Express your new(Di) as a product π′(Di) old(Di) in which
the factor π′(Di) is constructed by combining the histopathologist’s proba-
bility factors for the diagnoses with your priors for for them, as follows.5

(1) π(Di) :=
π′(Di)∑

i π′(Di) old(Di)
(Your Di probability factor)

Now, writing your new(Di) = π′(Di) old
′(Di) in the formula in sec. 2.2 for

updating by probability kinematics, and applying the product rule, we have

(2) new(H) =
∑
i

π′(Di) old(H ∧Di)

as your updated probability for a prognosis, in the light of the observer’s
report and your prior probabilities, and

(3)
new(H1)

new(H2)
=

∑
i π

′(Di)old(H1 ∧Di)∑
i π′(Di)old(H2 ∧Di)

as your updated odds between two prognoses.6

Example 5, Using the consultant’s diagnostic updates. In exam-
ple 4 the histopathologist’s unspecified priors were updated to new values
new′(Di) = 1

3
, 1

6
, 1

2
for i = 1, 2, 3 by her observation. Now if all her old′(Di)’s

were 1
3
, her probability factors would be π′(Di) = 1, 1

2
, 3

2
; if your old(Di)’s

were 1
4
, 1

2
, 1

4
, your diagnostic probability factors (1) would be π(Di) = 4

3
, 2

3
, 2;

and if your old(H ∧Di)’s were 3
16
, 3

32
, 3

32
then by (2) your new(H) would be

1
2

as against old(H) = 3
8
, so that your π(5-year survival) = 4

3
.

It is noteworthy that formulas (1)-(3) remain valid when the probability
factors are replaced by anchored odds (or “Bayes”) factors:

5Without the normalizing denominator in (1), the sum of your new(Di)’s might turn
out to be = 1.

6Combine (1) and (2), then cancel the normalizing denominators to get (3).
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(4) β(Di : D1) =
newDi

new(D1)
/
old(Di)

old(D1)
=

π(Di)

π(D1)
(Di : D1 Bayes factor)

This is your Bayes factor for Di against D1; it is the number by which your
old odds on D1 against D1 can be multiplied in order to get your new odds;
it is what remains of your new odds when the old odds have been factored
out. Choice of D1 as the anchor diagnosis with which all the Di are compared
is arbitrary. Since odds are arbitrary up to a constant multiplier, any fixed
diagnosis Dk would do as well as D1, for the Bayes factors β(Di : Dk) are all
of form β(Di : D1)× c, where the constant c is β(D1 : Dk).

Bayes factors have wide credibility as probabilistic observation reports,
with prior probabilities “factored out”.7 But probability factors carry some
information about priors, as when a probability factor of 2 tells us that the
old probability must have been ≤ 1/2 since the new probability must be
≤ 1. This residual information about priors is neutralized in the context of
formulas (1)-(3) above, which remain valid with anchored Bayes factors in
place of probability factors. This matters (a little) because probability factors
are a little easier to compute than Bayes factors, starting from old and new
probabilities.

3.4 Updating Twice: Commutativity

Here we consider the outcome of successive updating on the reports of two
different experts—say, a histopathologist (′) and a radiologist (′′)—assuming
invariance of your conditional probabilities relative to both experts’ parti-
tions. Question: If you update twice, should order be irrelevant?

Should
′
�→

′′
�→ =

′′
�→

′
�→ ?

The answer depends on particulars of

(1) the partitions on which
′
�→ and

′′
�→ are defined;

(2) the mode of updating (by probabilities? Bayes factors?); and

(3) your starting point, P .

7In a medical context, this goes back at least as far as Schwartz, Wolfe, and Pauker,
“Pathology and Probabilities: a new approach to interpreting and reporting biopsies”, New
England Journal of Medicine 305 (1981) 917-923.
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3.4.1 Updating on alien probabilities for diagnoses

A propos of (2), suppose you accept two new probability assignments to one
and the same partition, in turn.

• Can order matter?

Certainly. Since in both updates your new(H) depends only on your invariant
conditional probabilities old(H|Di) and the new(Di)’s that you adopt from
that update’s expert, the second assignment simply replaces the first.

• When is order immaterial?

When there are two partitions, and updating on the second leaves probabil-
ities of all elements of the first unchanged—as happens, e.g., when the two
partitions are independent relative to your old.8

3.4.2 Updating on alien factors for diagnoses9

Notation: Throughout each formula, f = β or f = π, as you wish.

In updating by Bayes or probability factors f for diagnoses as in 3.3,
order cannot matter.10 Example 6, One partition. Adopting as your own
both a pathologist’s factors f ′

i and a radiologist’s factors f ′′
i on the same

partition—in either order—you come to the same result: your overall factors
will be products f ′

if
′′
i of the pathologist’s and radiologist’s factors. Your final

probabilities for the diagnoses and for the prognosis B will be

new(Di) = old(Di)f, Q(H) =
∑
i

old(H ∧Di)f

where f is your normalized factor, constructed from the alien f ′ and ′′:

f =
f ′
if

′′
i∑

i old(Ai)f
′
if

′′
i

Example 7, Two partitions. a pathologist’s,
′
�→, with partition {D′

i}
and factors f ′

i (i = 1, . . . ,m), and a radiologist’s,
′′
�→, with partition {D′′

j } and

8For more about this, see Diaconis and Zabell (1982), esp. 825-6.
9For more about this, see Carl Wagner’s ‘Probability Kinematics and Commutativity’,

Philosophy of Science 69 (2002) 266-278.
10Proofs are straightforward. See pp. 52-64 of Richard Jeffrey, Petrus Hispanus Lectures

2000: After Logical Empiricism, Sociedade Portuguesa de Filosofia, Edições Colibri, Lis-
bon, 2002 (edited, translated and introduced by António Zilhão. Also in Portugese: Depois
do empirismo lógico.)
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factors f ′′
j (j = 1, . . . , n). These must commute, for in either order they are

equivalent to a single mapping, �→, with partition {D′
i∧D′′

j |old(A′
i∧A′′

j ) > 0}
and factors f ′

if
′′
j . Now in terms of your normalization

fi,j =
f ′
if

′′
j∑

i,j old(D
′
i ∧D′′

j )f
′
if

′′
j

of the alien factors, your updating equations on the partition elementsD′
i∧D′′

j

can be written new(D′
i ∧D′′

j ) = fi,jold(D
′
i ∧D′′

j ). Then your new probability
for the prognosis will be

new(H) =
∑
i,j

fi,jold(H ∧D′
i ∧D′′

j ).

3.5 Softcore Empiricism

Here is a sample of mid-20th century hardcore empiricism:

Subtract, in what we say that we see, or hear, or otherwise learn
from direct experience, all that conceivably could be mistaken; the
remainder is the given content of the experience inducing this
belief. If there were no such hard kernel in experience—e.g., what
we see when we think we see a deer but there is no deer—then
the word ‘experience’ would have nothing to refer to.11

Hardcore empiricism puts some such “hard kernel” to work as the “purely
experiential component” of your observations, about which you canot be
mistaken. Lewis himself thinks of this hard kernel as a proposition, since it
has a truth value (i.e., true), and has a subjective probability for you (i.e.,
1). Early and late, he argues that the relationship between your irrefutable
kernel and your other empirical judgments is the relationship between fully
believed premises and uncertain conclusions, which have various probabilities
conditionally upon those premises. Thus, in 1929 (Mind and the World Order,
pp. 328-9) he holds that

the immediate premises are, very likely, themselves only probable,
and perhaps in turn based upon premises only probable. Unless

11C. I. Lewis, An Analysis of Knowledge and Valuation, Open Court, LaSalle, Illinois,
1947, pp. 182-3. Lewis’s emphasis.
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this backward-leading chain comes to rest finally in certainty,
no probability-judgment can be valid at all. . . . Such ultimate
premises . . . must be actual given data for the individual who
makes the judgment.

And in 1947 (An Analysis of Knowledge and Valuation, p. 186):

If anything is to be probable, then something must be certain.
The data which themselves support a genine probability, must
themselves be certainties. We do have such absolute certainties in
the sense data initiating belief and in those passages of experience
which later may confirm it.

In effect, Lewis subscribes to Carnap’s view12 of inductive probability as
prescribing, as your current subjective probability for a hypothesis H, your
old(H|D1 ∧ . . . ∧ Dt), where the Di are your fully believed data sentences
from the beginning (D1) to date (Dt) and old is a probability assignment
that would be appropriate for you to have prior to all experience.

Lewis’s arguments for this view seem to be based on the ideas, which we
have been undermining in this chapter, that (a) conditioning on certainties
is the only rational way to form your degrees of belief, and (b) if you are
rational, the information encoded in your probabilies at any time is simply the
conjunction of all your hardcore data sentences up to that time. But perhaps
there are softcore, probabilistic data sentences on which simple conditioning
is possible to the same effect as probability kinematics:

Example 6, Is the shirt blue or green? There are conditions (blue/green
color-blindness, poor lighting) under which what you see can lead you to
adopt probabilities—say, 2

3
, 1

3
—for blue and green, where there is no hard-

core experiential proposition E you can cite for which your old(Blue|E) = 2
3

and old(Green|E) = 1
3
. The required softcore experiential proposition E

would be less accessible than Lewis’s ‘what we see when we think we see
a deer but there is no deer’, since what we think is not that the shirt is
blue, but that new(blue) = 2

3
and new(green) = 1

3
. With E as the proposi-

tion new(blue) = 2
3
∧ new(green) = 1

3
, it is possible to expand the domain

of the function old so as to allow conditioning on E in a way that yields
the same result you would get via probability kinematics. Formally, this E
behaves like the elusive hardcore E at the beginning of this example.

12See, e.g., Rudolf Carnap, The Logical Foundations of Probability, University of Chicago
Press (1950, 1964).
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This is how it works.13 For an n-fold partition, where

E = new(D1) = d1 ∧ . . . ∧ new(Dn) = dn .14

If

(1) old(Di| new(Di) = di )= di

and

(2) old(H|Di∧E ) = old(H|Di)

then

(3) old(H| E)= d1old(H|D1) + . . .+ dnold(H|Dn).

In the presence of the certainty condition, new(E)=1, the invariance con-
dition new(H|E) = old(H|E) reduces to new(H) = old(H|E) and we have
probability kinematics,

(4) new(H) = d1old(H|D1) + . . . dnold(H|Dn).

Perhaps E could be regarded as an experiential proposition in some soft
sense. It may be thought to satisfy the certainty and invariance conditions,
new(E) = 1 and new(H|E) = old(H|E), and it does stand outside the normal
run of propositions to which we assign probabilities, as do the presumed
experiential propositions with which we might hope to cash those heavily
context-dependent epistemological checks that begin with ‘looks’. The price
of that trip would be a tricky expansion of the probability assignment, from
the (“first-order”) objective propositions such as diagnoses and prognoses
that figure in the kinematical update formula to subjective propositions of the

second order (E and new(Di) = di ) and third ( old(E) = 1 ) and beyond.15

13Brian Skyrms, Causal Necessity (Yale, 1980), Appendix 2.
14Such boxes are equivalent to fore-and-aft parentheses, and easier to parse.



Chapter 4

Expectation Primer

Your expectation, exX, of an unknown number, X, is usually defined as a
weighted average of the numbers you think X might be, in which the weights
are your probabilities for X’s being those numbers: ex is usually defined
in terms of pr. But in many ways the opposite order is preferable, with pr
defined in terms of ex as in this chapter.1

4.1 Probability and Expectation

If you see only finitely many possible answers, x1, . . . , xn, to the question of
what number X is, your expectation can be defined as follows:

(1) exX =
n∑
i=1

pi xi —where pi = pr(X = xi).

Example, X = The year Turing died. If I am sure it was one of the
years from 1951 to 1959, with equal probabilities, then my ex(X) will be
1951

9
+ 1952

9
+ . . . + 1959

9
, which works out to be 1954.5. And if you are sure

Turing died in 1954, then for you n = 1, p1 = 1 and exX=1954.

These numbers X are called random variables, R.V.’s. Since an R.V.
is always some particular number, random variables are really constants—
known or unknown. The phrase ‘the year Turing died’ is a constant which,

1—and as in the earliest texbook of probability theory: Christiaan Huygens, De Ra-
tiociniis in Ludo Aleae, 1657 (“On Calculating in Games of Luck”). Notable 20th c.
expectation-based treatments are Bruno de Finetti’s Teoria delle Probabilità, v. 1, Ein-
audi, 1970 (= Theory of Probability, Wiley, 1975) and Peter Whittle’s Probability via
Expectation, Springer, 4th ed., 2000.
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Worth $X if H is true,

worth $p if H is false.

price: $p

or, for short: 

X

p

p
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as a matter of empirical fact, denotes the number 1954, quite apart from
whether you or I know it.

We could have taken expectation as the fundamental concept, and defined
probabilities as expectations of particularly simple R.V.’s, called ‘indicators’.
The indicator of a hypothesis H is a constant, IH , which is 1 if H is true
and 0 if H is false. Now probabilities are expectations of indicators,

(2) pr(H) = ex(IH).

This is equivalent to definition (1).

Definition (2) is quite general. In contrast, definition (1) works only in
cases where you are sure that X belongs to a particular finite list of num-
bers. Of course, definition (1) can be generalized, but this requires relatively
advanced mathematical concepts which definition (2) avoids, or, anyway,
sweeps under the carpet.2

Observe that expectations of R.V.’s need not be values those R.V.’s can
have. In the Turing example my expectation of the year of Turing’s death
was 1954.5, which is not the number of a year. Nor need your expectation of
the indicator of past life on Mars be one of the values, 0 or 1, that indicators
can assume; it may well be 1

10
, as in the story in sec. 1.1.

4.2 Conditional Expectation

Just as we defined your conditional probabilities as your buying-or-selling
prices for tickets that represent conditional bets, so we define your conditional
expectation of a random variable X given truth of a statement H as your
buying-or-selling price for the following ticket:

We write ‘ex(X|H)’ for your conditional expectation of X given H.

2For example, the Riemann-Stieltjes integral: if you think X might be any real number
from a to b, then (1) becomes: exX =

∫ b

a
x dF (x), where F (x) = pr(X < x).



H

-H ex(X | H)

X

0

  ex(X | H)
+  = X·IH

  =
0

  ex(X | H)
+

X

0

(a) (b) (c)

(d) (e)
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The following rule might be viewed as defining conditional expectations
as quotients of unconditional ones when pr(H) = 0, just as the quotient rule
for probabilities might be viewed as defining pr(G|H) as pr(GH)/pr(H).

Quotient Rule: ex(X|H) =
ex(X · IH)

ex(IH)
=

ex(X · IH)

pr(H)
if pr(H) = 0.

Of course this can be written as follows, without the condition pr(H) = 0.

Product Rule: ex(X · IH) = ex(X|H) · pr(H)

A “Dutch book” consistency argument can be given for this product rule
rather like the one given in sec. 1.4 for the probability product rule: Consider
the following five tickets.

Clearly, ticket (a) has the same dollar value as (b) and (c) together on each
hypothesis as to whether H is true or false. And (d) and (e) have the same

values as (b) and (c), since X · IH = {X if H is true
0 if ¬H is true and (e) = (c). Then

unless your price for (a) is the sum of your prices for (d) and (e), so that the
condition ex(X|H) = ex(X · IH)+ ex(X|H)pr(¬H) is met, you are inconsis-
tently placing different values on the same prospect depending on whether it
is described in one or the other of two provably equivalent ways. Now setting
pr¬H = 1 − prH and simplifying, the condition boils down to the product
rule.

Historical Note. In the 18th century Thomas Bayes defined probability in
terms of expectation as follows:

“The probability of any event is the ratio between the value at
which an expectation depending on the happening of the event
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ought to be computed, and the value of the thing expected upon
its happening.”3

This is simply the product rule, solved for prH =
ex(X · IH)

ex(X|H)
. Explanation:

ex(X ·IH) is “an expectation [$X] depending on the happening of the event”
and ex(X|H) is “the value of the thing expected upon its [H’s] happening”.

4.3 Laws of Expectation

The axioms for expectation can be taken to be the product rule and

(3) Linearity: ex(aX + bY + c) = a ex(X) + b ex(Y ) + c,

where the small letters stand for numerals (= random variables whose values
everybody who understands the language is supposed to know).

Three notable special cases of linearity are obtained if we replace ‘a, b, c’
by ‘1, 1, 0’ (additivity) or ‘a, 0, 0’ (proportionality) or ‘0, 0, c’ (constancy, then
proportionality with ‘c’ in place of ‘a’):

(4)
Additivity : ex(X + Y ) = ex(X) + ex(Y )

Proportionality : ex(aX) = a ex(X)
Constancy : ex(�) = 1

If n hypotheses Hi are well-defined, they have actual truth values (truth
or falsehood) even if we do not know what they are. Therefore we can define
the number of truths among them as IH1 + . . .+ IHn . If you have definite
expectations ex(IHi

) for them, you will have a definite expectation for that
sum, which, by additivity, will be ex(IH1) + . . .+ ex(IH1).

Example 1, Calibration. Suppose you attribute the same probability,
p, to success on each trial of a certain experiment: pr(H1) = . . . = pr(Hn) =
p. Consider the indicators of the hypotheses, Hi, that the different trials
succeed. The number of successes in the n trials will be the unknown sum of

the indicators, so the unknown success rate will be Sn =
1

n

n∑
i=1

Hi. Now

by additivity and constancy, your expectation of the success rate must be p.4

3‘Essay toward solving a problem in the doctrine of chances,’ Philosophical Transactions
of the Royal Society 50 (1763), p. 376, reprinted in Facsimiles of Two Papers by Bayes,
New York: Hafner, 1963.

4ex( 1
n

∑n
i=1 IHi

) = 1
nex(

∑n
i=1 IHi

) = 1
nex(

∑n
i=1 pr(Hi)) = 1

n (np) = p.
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The term ‘calibration’ comes from the jargon of weather forecasting; fore-
casters are said to be well calibrated — say, last year, for rain, at the level
p = .8 — if last year it rained on about 80% of the days for which the
forecaster turns out to have said there would be an 80% chance of rain.5

Why Expectations are Additive. Suppose x and y are your expecta-
tions of R.V.’s X and Y — say, rainfall in inches during the first and second
halves of next year — and z is your expectation for next year’s total rainfall,
X + Y . Why should z be x + y? The answer is that in every eventuality
about rainfall at the two locations, the value of the first two of these tickets
together is the same as the value of the third:

Values: $X + $Y = $(X + Y )

Prices: $x + $y = $(x + y)

Then unless the prices you would pay for the first two add up to the price
you would pay for the third, you are inconsistently placing different values
on the same prospect, depending on whether it is described to you in one or
the other of two provably equivalent ways.

Typically, a random variable might have any one of a number of values as
far as you know. Convexity is a consequence of linearity according to which
your expectation for the R.V. cannot be larger than all of those values, or
smaller than all of them:

Convexity: If you are sure that X is one of a finite
collection of numbers, exX lies in the range from the
largest to the smallest to the smallest of them.

Another connection between conditional and unconditional expectations:

Law of Total Expectation. If no two ofH1, . . . , Hn

are compatible and collectively they exhaust �, then

ex(X) =
n∑
i=1

ex(X|Hi)pr(Hi).

Proof: X =
∑n
i=1(X · IHi

) is an identity between R.V.’s. Apply ex to both
sides, then use additivity and the product rule.

When conditions are certainties for you, conditional expectations reduce
to unconditional ones:

5For more about calibration, etc., see Morris DeGroot and Stephen Fienberg, “Assess-
ing Probability Assessors: Calibration and Refinement,” in Shanti S. Gupta and James
O. Berger (eds.), Statistical Decision Theory and Related Topics III, Vol. 1, New York:
Academic Press, 1982, pp. 291-314.
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Certainty: ex(X|H) = ex(X) if pr(H) = 1.

Note that in a context of form ex(· · ·Y · · · |Y = X) it is always permissible
to rewrite Y as X at the left. Example: ex(Y 2|Y = 2X) = ex(4X2|Y = 2X).

Applying conditions:

ex(· · ·Y · · · |Y = X) = ex(· · ·X · · · |Y = X) (OK!)

But we cannot generally discharge a condition Y = X by rewriting Y as X
at the left and dropping the condition. Example: ex(Y 2 |Y = 2X) cannot be
relied upon to equal ex(4X2).

The Discharge Fallacy:

ex(· · ·Y · · · |Y = X) = ex(· · ·X · · ·) (NOT!)

Example 2, The problem of the two sealed envelopes. One contains
a check for an unknown whole number of dollars, the other a check for twice
or half as much. Offered a free choice, you pick one at random. What is wrong
with the following argument for thinking you should have chosen the other?

“Let X and Y be the values of the checks in the one and the
other. As you think Y equally likely to be .5X or 2X, ex(Y )
will be .5 ex(.5X) + .5E(2X) = 1.25E(X), which is larger than
ex(X).”

4.4 Median and Mean

Hydraulic Analogy. Let ‘F’ and ‘S’ mean heads on the first and second tosses
of an ordinary coin. Suppose you stand to gain a dollar for each head. Then
your net gain in the four possibilities for truth and falsity of F and S will be
as shown at the left below.

Think of that as a map of flooded walled fields in a plain, with the num-
bers indicating water depths in the four sections—e.g., the depth is X = 2
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throughout the F ∧ S region.6 In the four regions, depths are values of X
and areas are probabilities. To find your conditional expectation for X given
F , remove the wall the two sections of F so that the water reaches a single
level in the two. That level will be ex(X|F ), which is, 1.5 in the diagram.
Similarly, removing the wall between the two sections of ¬F , your condi-
tional expectation for X given ¬F is seen to be ex(X|¬F ) = 0.5. To find
your unconditional expectation of gain, remove both walls so that the water
reaches the same level throughout: ex(X) = 1.

But there is no mathematical reason for magnitudes X to have only a finite
numbers of values, e.g., we might think of X as the birth weight in pounds of
the next giant panda to be born in captivity—to no end of decimal places of
accuracy, as if that meant something.7 Nor is there any reason why X cannot
have negative values, as in the case of temperature.

Balance. The following analogy is more easily adapted to the continuous
case. On a weightless rigid beam, positions represent values of a magnitude X
that might go negative as well as positive. Pick a zero, a unit, and a positive
direction on the beam. Get a pound of modelling clay, and distribute it
along the beam so that the weight of clay on each section represents your
probability that the true value of X is in that section—say, like this:

Locations on the beam are months lived after diagnosis; the weight of clay
on the interval from 0 to m is the probability of still being alive in m months.

“The Median is not the Message.”8 “In 1982, I learned I was suffering
from a rare and serious cancer. After surgery, I asked my doctor what the
best technical literature on the cancer was. She told me ... that there was
nothing really worth reading. I soon realized why she had offered that humane
advice: my cancer is incurable, with a median mortality of eight months after
discovery.”

In terms of the beam analogy here are the key definitions, of the terms
“median” and “mean”—the latter being a synonym for “expectation”:

6And therefore, ex(X|F ∧ S) = 2.
7It does not. The commonplace distinction between panda and ambient moisture, dirt,

etc. is not drawn finely enough to let us take the remote decimal places seriously.
8See Stephen Jay Gould, Full House (New York, 1996), sec. 4.
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The median is the point on the beam that divides the weight of
clay in half: the probabilities are equal that the true value of X is
represented by a point to the right and to the left of the median.

The mean (= your expectation) is the point of support at which
the beam would just balance.

Gould continues:

“The distribution of variation had to be right skewed, I reasoned.
After all, the left of the distribution contains an irrevocable lower
boundary of zero (since mesothelioma can only be identified at
death or before). Thus there isn’t much room for the distribution’s
lower (or left) half—it must be scrunched up between zero and
eight months. But the upper (or right) half can extend out for
years and years, even if nobody ultimately survives.”

As this probability distribution is skewed (stretched out) to the right, the
median is to the left of its mean; Gould’s life expectancy is greater than
8 months. (The mean of 20 months suggested in the graph is my ignorant
invention.)

The effect of skewness can be seen especially clearly in the case of dis-
crete distributions like the following. Observe that if the right-hand weight is
pushed further right the mean will follow, while the median remains between
the second and third blocks.

4.5 Variance

The variance, defined as9

varX = ex(X − exX)2,

is one of the two commonly used measures of your uncertainty about the
value of X. The other is the “standard deviation”: σ(X)=

√
varX. In

9Here and below paradigm for ‘ex2X’ is ‘sin2x’ in trigonometry
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terms of the physical analogies in sec. 4.4, these measures of uncertainty cor-
respond to the average spread of mass away from the mean. The obvious
measure of this spread is your expectation ex(|X − exX|) of the absolute
value of the difference, but the square, which is like the absolute value in be-
ing non-negative, is easier to work with, mathematically; thus, the variance.
The move to the standard deviation counteracts the distortion in going from
the absolute value to the square.

The definition of the variance can be simplified by writing the right-hand
side as the expectation of the square minus the square of the expectation:10

(1) varX = ex(X2)− ex2(X)

Note that in case X is an indicator, X = IH , we have
varIH = pr(H)pr(¬H) ≤ 1

4
.

Proof. The inequality prH pr¬H ≤ 1
4

follows from the fact that p(1 − p)
reaches its maximum value of 0.25 when p = 0.5, as shown in the graph:

And the equality var(IH) = pr(H)pr(¬H) follows from (1) because (IH)2 =
IH (since IH can only assume the values 0 and 1) and ex(IH) = pr(H).

In contrast to the linearity of expectations, variances are nonlinear: in
place of ex(aX + b) = a exX + b we have

(2) var(aX + b) = a2 varX.

And in contrast to the unrestricted additivity of expectations, variances are

10Proof. (X − exX)2 = X2 − 2XexX + ex2X, where exX and its square are constants.
By linearity of ex your expectation of this sum = ex(X2)− ex2X.
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additive only under special conditions—e.g., pairwise uncorrelation, which is
defined as follows:

You see X1, . . . , Xn as pairwise uncorrelated if and
only if your ex(XiXj) = ex(Xi)ex(Xj) whenever i = j.

Now to be a bit more explicit, this is what we want to prove:

(3) var
n∑
i=1

Xi =
n∑
i=1

varXi, given pairwise uncorrelation of X1, . . . , Xn.

Proof. Recall that by (1) and additivity of ex,

var(
∑
iXi) = ex(

∑
iXi)

2 − ex2 ∑
iXi = ex(

∑
iXi)

2 − (ex
∑
iXi)

2.

Multiply out squared sums and use ex additivity and pairwise noncorrela-
tion to get

∑
i exX

2
i +

∑
i�=j exXi exXj −

∑
i ex

2Xi −
∑
i�=j exXi exXj. Cancel

identical terms with opposite signs and regroup to get
∑
i(exX

2
i − ex2Xi).

By (1), this =
∑
i varXi.

The covariance of two R.V.’s is defined as

cov(X, Y ) = ex[(X − exX)(Y − exY )] = ex(XY )− ex(X)ex(Y )

so that the covariance of an R.V. with itself is the variance, cov(X,X) =
var(X). The coefficient of correlation between X and Y is defined as

ρ(X, Y ) =
cov(X, Y )

σ(X)σ(Y )

where σ is the positive square root of the variance. Noncorrelation, ρ = 0, is
a consequence of independence, but it is a weaker property, which does not
imply independence; see supplement 4.5 at the end of this chapter.

4.6 A Law of Large Numbers

Laws of large numbers tell you how to expect the “sample average” of the
actual values of a number of random variables to behave as that number
increases without bound:

“Sample average”, Sn =
1

n

n∑
i=1

Xi,
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The basic question is how your expectations of sample averages of large fi-
nite numbers of random variables must behave. Here we show that, under
certain rather broad conditions, your expectation of the squared difference
(Sn′ − Sn′′)

2 between a sample average and its prolongation will go to 0 as
both their lengths, n′ and n′′, increase without bound:

If the random variables Xi all have the same, finite expectations,
ex(Xi) = m, variances var(Xi) = σ2 and pairwise correlation coefficients,
ρ(Xi, Xj) = r where i = j, then for all positive n′ and n′′,

(4) ex(Sn′ − Sn′′)
2 = (

1

n′ −
1

n′′ )σ
2(1− r).

Proof.

(Sn′ − Sn′′)
2 = (

1

n′

n′∑
i=1

Xi)
2 + 2(

1

n′

n′∑
i=1

Xi)(
1

n′′

n′∑
i=1

Xi) + (
1

n′′

n′∑
i=1

Xi)
2.

Multiplying this out we get terms involving (Xi)
2 and the rest involving

XiXj with i = j. Since m2 + σ2 = ex(Xi)
2 and m2 + rσ2 = ex(XiXj) with

i = j, we can eliminate all of the X’s and get formula (4) via some hideous
algebra.11

4.7 Supplements

4.1 Markov’s Inequality: pr(X ≥ ε) ≤ exX

ε
if ε > 0 and X ≥ 0.

This provides a simple way of getting an upper bound on your probabilities
that non-negative random variables X for which you have finite expectations

are at least ε away from 0. Proof of the inequality. If Y = {ε when X≥ε
0 when X<ε then

by the law of total expectation, ex(Y ) = ε · pr(X ≥ ε) + 0 · pr(X < ε) =

ε · pr(X ≥ ε), so that pr(X ≥ ε) =
ex(Y )

ε
. Now since Y ≤ X both when

X ≥ ε and when X < ε we have ex(Y ) ≤ ex(X) and, so, Markov’s inequality.

4.2 Chebyshev’s Inequality: pr(|X − ex(X)| ≥ ε) ≤ var(X)

ε2
if ε > 0.

Proof. Since squares are never negative, the Markov inequality implies that
pr(X2 ≥ ε) ≤ ex(X2)/ε if ε > 0; and from this, since |X| ≥ ε if and only
if X2 ≥ ε2, we have pr(|X| ≥ ε) ≤ ex(X2)/ε2 if ε > 0. From this, with
‘X − ex(X)’ for ‘X’, we have Chebyshev’s inequality.

11See Bruno de Finetti, Theory of Probability, volume 2, pp. 215-6. For another treat-
ment, see pp. 84-85 of de Finetti’s ‘Foresight’ in Henry Kyburg and Howard Smokler (eds.),
Studies in Subjective Probability, Krieger, Huntington, N.Y., 1980.
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4.3 Many Pairwise Uncorrelated R.V.’s. An updated version of the
oldest law of large numbers (1713, James Bernoulli’s) applies to random
variables X1, . . . , Xn which you see as pairwise uncorrelated and as having a
common, finite upper bound, b, on their variances. Here there will be a finite
upper bound b/ε2n on your probability that the sample average will differ by
more than ε from your expectation of that average. The bound b on the X’s
is independent of the sample size, n, so that for large enough samples your
probability that the error |Sn− ex(Sn)| in your expectation is ε or more gets
as small as you please.

For pairwise uncorrelated R.V.’s Xi whose variances are all ≤ b :

(5) For any ε > 0 : pr(|Sn − ex(Sn)| ≥ ε) ≤ b

nε2

This places an upper limit of
b

nε2
on your probability that the sample

average differs from your expectation of it by ε or more.

Proof: By (3), var(Sn) =
1

n2

n∑
i=1

var(Xi). Since each var(Xi) is ≤ b, this

is ≤ 1

n2
(nb) =

b

n
. Setting X = Sn in Chebyshev’s inequality, we have (5).

Note that if the Xi are indicators of propositions Hi, sample averages Sn
are relative frequencies Rn of truth:

Rn =
1

n

n∑
i=1

IHi
=

1

n
(the number of truths among H1, . . . , Hn)

4.4 Corollary: Bernoulli trials. These are sequences of propositions Hi

(say, “head on the i’th toss”) where for some p (=1/2 for coin-tossing) your
probability for truth of any n distinct H’s is pn.

Corollary. Suppose that, as in the case of Bernoulli trials, for all distinct
i and j from 1 to n : pr(Hi) = pr(H1) and pr(Hi ∧Hj) = pr2(H1). Then

(6) For any ε > 0, pr(|Rn − pr(H1)| ≥ ε) ≤ 1

4nε2
.

This places a limit of 1/4nε2 on your pr for a deviation of ε or more between
your pr(Hi) and the actual relative frequency of truths in n trials.

Thus, in n = 25, 000 tosses of a fair coin, your probability that the success
rate will be within ε = .01 of 0.50 will fall short of 1 by at most 1/4nε2 = 10%.
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Proof. Since exXi = ex(IHi
) = pr(Hi) = p, linearity of ex says that

ex(Sn) = 1
n
· np = p. Now by (2) we can set b = 1

4
in (5).

4.5 Non-correlation and independence. Random variables X, Y are
said to be uncorrelated from your point of view when your expectation
of their product is simply the product of your separate expectations (sec.
4.5). In the special case where X and Y are the indicators of propositions,
noncorrelation reduces to independence:

ex(XY ) = ex(X)ex(Y ) iff:
pr(X = x∧Y = y) = pr(X = x)pr(Y = y)
for all four pairs (x, y) of zeroes and ones,
or even for the single pair X = Y = 1.

But in general the uncorrelated pairs of random variables are not simply the
independent ones, as the following extreme example demonstrates.

Example, Non-correlation in spite of deterministic dependency.12

You have probability 1/4 for each of X = -2, -1, 1, 2; and Y = X2, so that you
have probability 1/2 for each possible value of Y (= 1 or 4), and probability
1/4 for each conjunction X = x ∧ Y = x2 with x = −2,−1, 1, 2. Then you
see X and Y as uncorrelated, for ex(X) = 0 and ex(XY ) = −8−1+1+8

4
= 0 =

ex(X)ex(Y ). Yet, pr(X = 1 ∧ Y = 1) = 1
4
= pr(X = 1)pr(Y = 1) = (1

4
)(1

2
).

Then noncorrelation need not imply independence. But independence does
always imply noncorrelation. In particular, in cases where X and Y take only
finitely many values, we have:13

If pr(X = x ∧ Y = y) = pr(X = x) · pr(Y = y) for all
values x of X and y of Y , then ex(XY ) = ex(X)ex(Y ).

12From William Feller, An Introduction to Probability Theory and its Applications, vol.
1, 2nd edition (1957), p. 222, example (a).

13Proof. By formula (1) in sec. 4.1, ex(XY ) =
∑

i,j xiyj pr(X = xi ∧ Y = yj), or, by
independence,

∑
i,j xiyj pr(X = xi) pr(Y = yj). By the same formula, ex(X)ex(Y ) =

{
∑

i xi pr(X = xi)}{
∑

j yj pr(Y = yj)}, which =
∑

i,j xiyj pr(X = xi) pr(Y = yj) again.



Chapter 5

Updating on Statistics

5.1 Where do Probabilities Come From?

Your “subjective” probability is not something fetched out of the sky on a
whim;1 it is your actual judgment, normally representing what you think your
judgment should be, in view of your information to date and of your sense of
other people’s information, even if you do not regard it as a judgment that
everyone must share on pain of being wrong in one sense or another.

But of course you are not always clear about what your judgment is,
or should be. The most important questions in the theory of probability
concern ways and means of constructing reasonably satisfactory probability
assignments to fit your present state of mind. (Think: trying on shoes.) For
this, there is no overarching algorithm. Here we examine two answers to
these questions that were floated by Bruno de Finetti in the decade from
(roughly) 1928 to 1938. The second of them, “Exchangeability”,2 postulates
a definite sort of initial probabilistic state of mind, which is then updated by
conditioning on statistical data. The first (“Minimalism”) is more primitive:
the input probability assignment will have large gaps, and the output will
not arise via conditioning.

1In common usage there is some such suggestion, and for that reason I would prefer to
speak of ‘judgmental’ probability. But in the technical literarure the term ‘subjective’ is
well established—and this is in part because of the lifelong pleasure de Finetti found in
being seen to give the finger to the establishment.

2And, more generally, “partial” exchangeability (see 5.2 below), of which simple exch-
nageability, which got named earlier, is a special case.

79
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5.1.1 Probabilities from statistics: Minimalism

Statistical data are a prime determinant of subjective probabilities; that is
the truth in frequentism. But that truth must be understood in the light of
certain features of judgmental probabilizing. One such feature that can be
of importance is persistence, as you learn the relative frequency of truths in
a sequence of propositions, of your judgment that they all have the same
probability. That is a condition under which the following little theorem of
the probability calculus can be used to generate probability judgments.3

Law of Little Numbers. In a finite sequence of propositions
that you view as equiprobable, if you are sure that the relative
frequency of truths is p, then your probability for each is p.

Then if, judging a sequence of propositions to be equiprobable, you learn
the relative frequency of truths in a way that does not change your judgment
of equiprobability, your probability for each proposition will agree with the
relative frequency.4

The law of little numbers can be generalized to random variables:

Law of Short Run Averages. In a finite sequence of random
variables for which your expections are equal, if you know only
their arithmetical mean, then that is your expectation of each.

Proof. By linearity of ex, if ex(Xi) = p for i = 1, . . . , n, p = 1
n

∑n
i=1 ex(Xi).

Then if, while requiring your final expectations for a sequence of magni-
tudes to be equal, you learn their mean value in a way that does not lead
you to change that requirement, your expectation of each will agree with that
mean.5

3See Jeffrey (1992) pp. 59-64. The name “Law of Little Numbers” is a joke, but I know
of no generally understood name for the theorem. That theorem, like the next (the “Law
of Short Run Averages”, another joke) is quite trivial; both are immediate consequences
of the linearity of the expectation operator. Chapter 2 of de Fineti (1937) is devoted to
them. In chapter 3 he goes on to a mathematically deeper way of understanding the truth
in frequentism, in terms of “exchangeability” of random variables (sec. 1.2, below).

4To appreciate the importance of the italicized caveat, note that if you learn the relative
frequency of truths by learning which propositions in the sequence are true, and which
false, and as you form your probabilities for those propositions you remember what you
have learned, then those probabilities will be zeros and ones instead of averages of those
zeros and ones.

5If you learn the individual values and calculate the mean as their average without
forgetting the various values, you have violated the caveat (unless it happens that all the
values were the same), for what you learned will have shown you that they are not equal.
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Example. Guessing Weight. Needing to estimate the weight of someone
on the other side of a chain link fence, you select ten people on your side
whom you estimate to have the same weight as that eleventh, persuade them
to congregate on a platform scale, and read their total weight. If the scale
reads 1080 lb., your estimate of the eleventh person’s weight will be 108 lb.—
if nothing in that process has made you revise your judgment that the eleven
weights are equal.6

This is a frequentism in which judgmental probabilities are seen as judg-
mental expectations of frequencies, and in which the Law of Little Numbers
guides the recycling of observed frequencies as probabilities of unobserved
instances. It is to be distinguished both from the intelligible but untenable
finite frequentism that simply identifies probabilities with actual frequencies
(generally, unknown) when there are only finitely many instances overall, and
from the unintellible long–run frequentism that would see the observed in-
stances as a finite fragment of an infinite sequence in which the infinitely long
run inflates expectations into certainties that sweep judgmental probabilities
under the endless carpet.

5.1.2 Probabilities from Statistics: Exchangeability7

On the hypotheses of (a) equiprobability and (b) certainty that the rela-
tive frequency of truths is r, the the Law of Little Numbers identified the
probability as r. Stronger conclusions follow from the stronger hypothesis of

exchangeability: You regard propositions H1, . . . , Hn as ex-
changeable when, for any particular t of them, your probability
that they are all true and the other f = n− t false depends only
on the numbers t and f .8 Propositions are essentially indicators,
random variables taking only the values 0 (falsity) and 1 (truth).
————————————————————————————
For random variables X1, . . . , Xn more generally, exchangeability
means invariance of pr(X1 < r1 ∧ . . .∧Xn < rn) for each n-tuple

6Note that turning statistics into probabilities or expectations in this way requires
neither conditioning nor Bayes’s theorem, nor does it require you to have formed partic-
ular judgmental probabilities for the propositions or particular estimates for the random
variables prior to learning the relative frequency or mean.

7Bruno de Finetti, Theory of Probability, vol. 2, pp. 211-224: Wiley, 1975.
8This comes to the same thing as invariance of your probabilities for Boolean com-

pounds of finite numbers of the Hi under all finite permutations of the positive integers,
e.g., P (H1 ∧ (H2 ∨ ¬H3)) = P (H100 ∧ (H2 ∨ ¬H7)).
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of real numbers r1, . . . , rn and each permutation of the X’s that
appear in the inequalities.

Here, again, as in sec. 5.1.1, probabilities will be seen to come from statistics—
this time, by ordinary conditioning, under the proviso that your prior prob-
ability assignment was exchangeable.

Exchangeability turns out to be a strong but reasonably common condition
under wich the hypotheses of the law of large numbers in sec. 4.6 are met.

5.1.3 Exchangeability: Urn examples

The following illustration in the case n = 3 will serve to introduce the basic
ideas.

Example 1. Three Draws from an Urn of Unknown Composition. The
urn contains balls that are red (r) or green (g), in an unknown proportion.
If you know the proportion, that would determine your probability for red.
But you don’t. Still, you may think that (say) red is the more likely color.
How likely? Well, here is one precise probabilistic state of mind that you
might be in, about it: your probabilities for drawing a total of 0, 1, 2, 3 red
balls might be p0 = .1, p1 = .2, p2 = .3, p3 = .4. And when there is more
than one possible order in which a certain number of heads can show up, you
will divide your probability among them equally. In other words: you see the
propositions Hi (= red on the i’th trial) as exchangeable.

There are eight possibilities about the outcomes of all three trials:

rrr | rrg rgr grr | rgg grg ggr | ggg

The vertical lines divide clumps of possibilities in which the number of reds
is 3, 2, 1, 0. In Table 1, the possibilities are listed under ‘h’ (for ‘history’)
and again under the H’s, where the 0’s and 1’s are truth values (1 = true,
0 = false) as they would be in the eight possibile histories. The value of the
random variable T3 (“tally” of the first 3 trials) at the right is the number of
r’s in the actual history, the number of 1’s under the H’s in that row. The
entries in the rightmost column are the values of pt taken from example 1.
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h H1 H2 H3 pr{h} t pr(T3 = t)

rrr 1 1 1 p3 3 .4
rrg 1 1 0 p2

3

rgr 1 0 1 p2
3

2 .3
grr 0 1 1 p2

3

rgg 1 0 0 p1
3

grg 0 1 0 p1
3

1 .2
ggr 0 0 1 p1

3

ggg 0 0 0 p0 0 .1

Table 1. Three Exchangeable Trials

We can think of propositions as identified by the sets of histories in which
they would be true. Examples: H1 = {rrr, rrg, rgr, rgg} and H1∧H2∧H3 =
{rrr}. And by additivity, your probability for “same outcome on the first two
trials” is pr{rrr, rrg, ggr, ggg} = p1 + 1

3
p2 + 1

3
p1 + p0 = .4+ .3

3
+ .2

3
+ .1 = 2

3
.

Evidently, exchangeability undoes the dreaded “combinatorial explosion:”

Combinatorial IMplosion. Your probabilities for all 2(2n) truth-
functional compounds of n exchangeable Hi are determined by
your probabilities for a particular n of them—namely, by all but
one of your probabilities p0, p1, . . . , pn for the propositions saying
that the number of truths among the H’s is 0, 1, . . . , n:9

The following important corollary of the combinatorial implosion is illus-
trated and proved below. (The R.V. Tm is the tally of the first m trials.)

The Rule of Succession.10 If H1, . . . , Hn, Hn+1 are exchange-
able for you and {h} is expressible as a conjunction of t of the
first n H’s with the denials of the other f = n− t, then

pr(Hn+1|{h}) =
t+ 1

n + 1
× pr(Tn+1 = t+ 1)

pr(Tn = n)
=

t+ 1

n + 2 + ∗ ,

where the correction term, ∗, is (f + 1)(pr(Tn+1 = t+1)
pr(Tn =n)

− 1).

Example 2. Uniform distribution: pr(Tn+1 = t) = 1
n+2

, where t ranges
from 0 to n + 1. In this (“Bayes-Laplace-Johnson-Carnap”)11 case the cor-
rection term ∗ in the rule of succession vanishes, and the rule reduces to

9The probability of the missing one will be 1 minus the sum of the other n.
10The best overall account is by Sandy Zabell, “The Rule of Succession” Erkenntnis 31

(1989) 283-321.
11For the history underlying this terminology, see Zabell’s paper, cited above.
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pr(Hn+1|{h}) = pr(Hn+1|Tn = t) =
t+ 1

n + 2
.

Example 3. The Ninth Draw. If you adopt the uniform distribution, your
probability for red next, given 6 red and 2 green on the first 8 trials, will be
pr(H9|T8 = 6) = pr(H9|{h}), where h is any history in the set that represents

the proposition T8 = 6. Then your pr(H9|T8 = 6) =
7

10
.

Proof of the rule of succession.

(a) pr(Hn+1|Cnk ) =
pr(Hn+1 ∧ Cnk )

pr(Cnk )
=

pr(Hn+1
t+1 )/(n+1

t+1 )

pr(Hn
t )/(nt )

=
(t+ 1) pr(Hn+1

t+1 )

(n + 1) pr(Hn
t )

by the quotient rule, implosion, and the fact that (nt )/(
n+1
t+1 ) = (t+1)/(n+1);

(b) pr(Cnk ) = pr(¬Hn+1 ∧ Cnk ) + pr(Hn+1 ∧ Cnk );

(c)
pr(Hn

t )

(nt )
=

pr(Hn+1
t )

(n+1
t )

+
pr(Hn+1

t+1 )

(n+1
t+1)

;

(d)
(nt )

(n+1
t )

=
f + 1

n + 1
and

(nt )

(n+1
t+1)

=
t+ 1

n + 1
;

(e) pr(Hn
t ) =

f + 1

n + 1
pr(Hn+1

t ) +
t+ 1

n + 1
pr(Hn+1

t+1 );

(f)
(t+ 1) pr(Hn+1

t+1 )

(n + 1) pr(Hn
t )

=
(t+ 1)pr(Hn+1

t+1 )

(f + 1)pr(Hn+1
t ) + (t+ 1)(

pr(Hn+1
t )

pr(Hn+1
t+1 )

− 1)
;

(g) The right-hand side of (f) =
t+ 1

n + 2 + (f + 1)(
pr(Hn+1

t )

pr(Hn+1
t+1 )

− 1)
.

5.1.4 Supplements

1 Law of Large Numbers. Show that exchangeable random variables satisfy
the three conditions in the law of 4.6.

2 A Pólya Urn Model. At stage 0, an urn contains two balls, one red and
one green. At each later stage a ball is drawn with double replacement: it is
replaced along with another ball of its color. Prove that the conditional odds
on black’s being drawn on the n + 1’st trial, given that black was drawn on
the first t trials and white on the next f = n− t, are t+1

f+1
, exactly as in the

urn examples of sec. 5.1.3 above.



CHAPTER 5. UPDATING ON STATISTICS 85

3 Exchangeability is preserved under mixing. Prove that if H1, . . . , Hn

are exchangeable relative to each of pr1, . . . , prm then they are exchangeable
relative to w1pr1 + . . .+ wmprm if the w’s are non-negative and sum to 1.

4 Independence is not preserved under mixing. Prove this, using a simple
counterexample where m = 2 and w1 = w2.

5 Independence, Conditional Independence, Exchangeability. Suppose you
are sure that the balls in an urn are either 90% red or 10% red, and you regard
those two hypotheses as equiprobable. If balls are drawn with replacement,
then conditionally on each hypothesis the propositions H1, H2, . . . that the
first, second, etc., balls drawn will be red are independent and equiprobable.
Is that also so unconditionally?
(a) Are the H’s unconditionally equiprobable? If so, what is their probability?
If not, why not?
(b) Are they unconditionally independent? Would your probability for red
next be the same as it was initially after drawing one ball, which is is red?
(c) Are they exchangeable?

Diaconis and Freedman12 on de Finetti’s

Generalizations of Exchangeability

De Finetti wrote about partial exchangeability over a period of half a century.13

These treatments are rich sources of ideas, which take many readings to di-
gest. Here we give examples of partial exchangeability that we understand
well enough to put into crisp mathematical terms. All results in Sections
2–5 involve random quantities taking only two values. We follow de Finetti
by giving results for finite as well as infinite sequences. In 5.3 we review
exchangeability. In in 5.4 we present examples of partially exchangeable se-
quences – 2 × 2 tables and Markov chains – and give general definitions.
In 5.5 a finite form of de Finetti’s theorem is presented. 5.6 gives some
infinite versions of de Finetti’s theorem and a counterexample which shows
that the straightforward generalization from the exchangeable case sketched
by de Finetti is not possible. The last section contains comments about the

12This is an adaptation of the chapter (#11) by Persi Diaconis and David Freedman
in Studies in Inductive Logic and Probability, vol. 2 (Richard Jeffrey, ed.; University of
California Press, 1980) which is reproduced here with everybody’s kind permission. A bit
of startlingly technical material in the original publication (see 5.5 and 5.6) has been
retained here, suitably labelled.

13Beginning with de Finetti (1938).
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practical implications of partial exchangeability. We also discuss the closely
related work of P. Martin-Löf on repetitive structures.

5.2 Exchangeability Itself

We begin with the case of exchangeability. Consider the following experi-
ment: A coin is spun on a table. We will denote heads by 1 and tails by
0. The experiment is to be repeated ten times. You believe you can assign
probabilities to the 210 = 1024 possible outcomes by looking at the coin
and thinking about what you know. There are no a priori restrictions on the
probabilities assigned save that they are nonnegative and sum to 1. Even
with so simple a problem, assigning over a thousand probabilities is not a
simple task. De Finetti has called attention to exchangeability as a possible
simplifying assumption. With an exchangeable probability two sequences of
length 10 with the same number of ones are assigned the same probability.
Thus, the probability assignment is symmetric, or invariant under changes
in order. Another way to say this is that only the number of ones in the
ten trials matters, not the location of the ones. If believed, the symmetry
assumption reduces the number of probabilities to be assigned from 1024 to
11—the probability of no ones through the probability of ten ones.

It is useful to single out certain extreme exchangeable probability assign-
ments. Though it is unrealistic, we might be sure there will be exactly one
head in the ten spins. The assumption of exchangeability forces each of the
ten possible sequences with a single one in it to be equally likely. The distri-
bution is just like the outcome of ten draws without replacement from an urn
with one ball marked 1 and nine balls marked 0—the ball marked 1 could
be drawn at any stage and must be drawn at some time. There are 11 such
extremal urns corresponding to sure knowledge of exactly i heads in the ten
draws where i is a fixed number between zero and ten. The first form of de
Finetti’s theorem follows from these observations:

(1) Finite form of de Finetti’s theorem: Every exchange-
able probability assignment on sequences of length N is a unique
mixture of draws without replacement from the N+1 extremal
urns.14

By a mixture of urns we simply mean a probability assignment over the N+1
possible urns. Any exchangeable assignment on sequences of length N can

14This form of the result was given by de Finetti (1938) and by many other writers on
the subject. Diaconis, (1977) 271-281, is an accessible treatment.
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be realized by first choosing an urn and then drawing without replacement
until the urn is empty.

The extremal urns, representing certain knowledge of the total number of
ones, seem like unnatural probability assignments in most cases. While such
situations arise (for example, when drawing a sample from a finite popula-
tion), the more usual situation is that of the coin. While we are only consider-
ing ten spins, in principle it seems possible to extend the ten to an arbitrarily
large number. In this case there is a stronger for of (1) which restricts the
probability assignment within the class of exchangeable assignments.

(2) Infinite form of de Finetti’s theorem: Every exchange-
able probability assignment pr that can be indefinitely extended
and remain exchangeable is a unique mixture µ of draws with
replacement from a possibly infinite array of extremal urns.

Again the mixture is defined by a probability assignment to the extremal
urns. Let the random variable p be the proportion of red balls in the urn from
which the drawing will be made. A simple example where the array is a con-
tinuum: For each sub-interval I of the real numbers from 0 to 1, µ(p ∈ I) =
the length of I. This is the µ that is uniquely determined when pr is the
uniform distribution (5.1.3, example 2). If

∑
p∈C µ(p) = 1 for a countable

set C of real numbers from 0 to 1, the formula is

(3) pr(j ones in k trials) =
(
k
j

) ∑
p∈C

pk(1− p)jµ(p)

In the general case C = [0, 1] and the sum becomes an integral.15 This holds
for every k with the same µ. Spelled out in English, (3) and its general case
become (2). We have more to say about this interpretation of exchangeability
as expressing ignorance of the true value of p in Remark 1 of 5.6.

Not all exchangeable measures on sequences of length k can be extended
to exchangeable sequences of length n > k. For example, sampling without
replacement from an urn with k balls in it cannot be extended to k + 1
trials.16 The requirement that an exchangeable sequence of length k be in-
finitely extendable seems out of keeping with de Finetti’s general program of
restricting attention to finite samples. An appropriate finite version of (3) is
given by Diaconis and Freedman (1978), where we show that if an exchange-
able probability on sequences of length k is extendable to an exchangeable

15pr(j ones in k trials) =
(
k
j

) ∫
p∈[0,1]

pk(1− p)jdµ(p).
16Necessary and sufficient conditions for extension are found in de Finetti (1969),

Crisma, L. (1971) and Diaconis, P. (1977).
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probability on sequences of length n > k, then (3) almost holds in the sense
that there is a measure µ such that for any set A ⊆ {0, 1, 2, . . . , k},

(4)

∣∣∣∣∣pr
{

number of 1’s in

k trials is in A

}
−Bµ

{
number of 1’s in

k trials is in A

}∣∣∣∣∣ ≤ 2k

n

uniformly in n, k, and A—where Bµ is the assignment determined by the
mixture µ of drawings with replacement from urns with various proportions
p of 1’s.17

For example, it is easy to imagine the spins of the coin as the first ten
spins in a series of 1000 spins. This yields a bound of .02 on the right hand
side of (4).

Both of the results (3) and (4) imply that for many practical purposes
instead of specifying a probability assignment on the number of ones in n
trials it is equivalent to specify a prior measure µ on the unit interval. Much
of de Finetti’s discussion in his papers on partial exchangeability is devoted
to reasonable choices of µ.18 We will not discuss the choice of a prior further
but rather restrict attention to generalizations of (2), (3), and (4) to partially
exchangeable probability assignments.

5.3 Two Species of Partial Exchangeability

In many situations exchangeability is not believable or does not permit in-
corporation of other relevant data. Here are two examples which will be
discussed further in 5.4 and 5.5.

5.3.1 2 × 2 tables.

Consider zero/one outcomes in a medical experiment with n subjects. We
are told each subject’s sex and if each subject was given a treatment or
was in a control group. In some cases, a reasonable symmetry assumption is
the following kind of partial exchangeability: regard all the treated males as
exchangeable with one another but not with the subjects in the other three
categories; likewise for the other categories. Thus, two sequences of zeros

17Hairy-style (4):
∣∣∣pr {

number of 1’s in
k trials is in A

}
−

∑
j∈A

(
k
j

) ∫
p∈[0,1]

pj(1− p)k−1dµ(p)
∣∣∣ ≤ 2k

n .
18The paper by A. Bruno (1964) “On the notion of partial exchangeability”, Giorn. 1st.

It. Attuari, 27, 174–196, translated in Chapter 10 of de Finetti (1974), is also devoted to
this important problem.
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and ones of length n which had the same number of ones in each of the four
categories would be assigned the same probability. For example, if n = 10,
each of the three sequences below must be assigned the same probability.

Trial 1 2 3 4 5 6 7 8 9 10
Sex M M M F F M M F F F

Treatment/Control T T T T T C C C C C
1 1 0 1 0 1 1 1 0 1 0
2 0 1 1 0 1 1 1 0 0 1
3 0 1 1 1 0 1 1 1 0 0

In this example, there are three treated males, two treated females, two
control males, and three control females. The data from each of the three
sequences can be summarized in a 2 × 2 table which records the number of
one outcomes in each group. Each of the three sequences leads to the same
table:

(5)
T C

M 2 2
F 1 1

5.3.2 Markov Dependency

Consider an experiment in which a thumbtack is placed on the floor and given
an energetic flick with the fingers. We record a one if the tack lands point
upward and a zero if it lands point to the floor. For simplicity suppose the
tack starts point to the floor. If after each trial the tack were reset to be point
to the floor, exchangeability might be a tenable assumption. If each flick of
the tack was given from the position in which the tack just landed, then
the result of each trial may depend on the result of the previous trial. For
example, there is some chance the tack will slide across the floor without ever
turning. It does not seem reasonable to think of a trial depending on what
happened two or more trials before. A natural notion of symmetry here is to
say that if two sequences of zeros and ones of length n which both begin with
zero have the same number of transitions: zero to zero, zero to one, one to
zero, and one to one, they should both be assigned the same probability. For
example, if n = 10, any of the following three sequences would be assigned
the same probability.

Trial 1 2 3 4 5 6 7 8 9 10
1 0 1 0 1 1 0 0 1 0 1
2 0 1 0 1 0 0 1 1 0 1
3 0 0 1 0 1 0 1 0 1 1

Each sequence begins with a zero and has the same transition matrix
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(6)

to
0 1

0 1 4
from

1 3 1

It turns out that there are 16 different sequences starting with zero that
have this transition matrix.

A general definition of partial exchangeability that includes these examples
involves the notion of a statistic: A function from the sequences of length n
into a set X. A probability assignment P on sequences of length n is partially
exchangeable for a statistic T if

T (x) = T (y) implies P (x) = P (y)

where x and y are sequences of length n. Freedman (1962) and Lauritzen
(1974) have said that P was summarized by T in this situation. In the case of
exchangeability the statistic T is the number of ones. Two sequences with the
same number of ones get assigned the same probability by an exchangeable
probability. This definition is equivalent to the usual one of permutation
invariance. In the case of 2 × 2 tables the statistic T is the 2 × 2 table (5).
In the Markov example the statistic T is the matrix of transition counts (6)
along with the outcome of the first trial.

Such examples can easily be combined and extended. For instance, two
stage Markov dependence with additional information such as which experi-
menter reported the trial and the time of day being given. De Finetti (1938),
(1974, Section 9.6.2), Martin-Löf (1970), (1974), and Diaconis and Freedman
(1978a,b,c) give further examples. In remark 4 of Section 6 we discuss a more
general definition of partial exchangeability.

5.4 Finite Forms of de Finetti’s Theorem on

Partial Exchangeability

There is a simple analog of Theorem (1) for partially exchangeable sequences
of length n. We will write {0, 1}n for the set of sequences of zeros and ones
of length n. Let T : {0, 1}n → X be a statistic taking values t1, t2, . . . , tk. Let
Si = {x ∈ 2n : T (x) = ti} and suppose Si contains ni elements. Let pri be
the probability assignment on 2n which picks a sequence x ∈ 2n by choosing
an x from Si uniformly–e.g., with probability 1/ni. Then pri is partially
exchangeable with respect to T . In terms of these definitions we now state
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(7) A Finite form of de Finetti’s theorem on partial
exchangeability. Every probability assignment pr on {0, 1}n
which is partially exchangeable with respect to T is a unique
mixture of the extreme measures pri. The mixing weights are
wi = pr{x : T (x) = ti}.19

Theorem (7) seems trivial but in practice a more explicit description of the
extreme measures Pi—like the urns in (1)—can be difficult. We now explore
this for the examples of Section 3.

(8) Example—2× 2 tables

Suppose we know there are: a treated males, b untreated males, c treated
females, and d untreated females with a+b+c+d = n. The sufficient statistic
is the 2 × 2 table with entries which are the number of ones in each of the
four groups.

M
F

T U(
i j
k l

)
where

0 ≤ i ≤ a, 0 ≤ j ≤ b
0 ≤ k ≤ c, 0 ≤ l ≤ d.

There are (a+1)× (b+1)× (c+1)× (d+1) possible values of the matrix.
An extreme partially exchangeable probability can be thought of as follows:
Fix a possible matrix. Make up four urns. In the first urn, labeled TM (for
treated males), put i balls marked one and a− i balls marked zero. Similarly,
construct urns labeled UM, TF, and UF To generate a sequence of length
n given the labels (Sex and Treated/Untreated) draw without replacement
from the appropriate urns. This scheme generates all sequences x ∈ 2n with
the given matrix

(
i j
k l

)
equiprobably. Theorem (7) says that any partially

exchangeable probability assignment on 2n is a unique mixture of such urn
schemes. If a, b, c, and d all tend to infinity, the binomial approximation to
the hypergeometric distribution will lead to the appropriate infinite version
of de Finetti’s theorem as stated in Section 5.

(9) Example—Markov chains

For simplicity, assume we have a sequence of length n+1 that begins with
a zero. The sufficient statistic is T =

(
t00 t01
t10 t11

)
where tij is the number of i

to j transitions. A counting argument shows that there are
(
n
2

)
+ 1 different

values of T possible. Here is an urn model which generates all sequences of

19In the language of convex sets, the set of partially exchangeable probabilities with
respect to T forms a simplex with extreme points pri.
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length n + 1 with a fixed transition matrix T equiprobably. Form two urns
U0 and U1 as follows: Put tij balls marked j into urns Ui. It is now necessary
to make an adjustment to make sure the process doesn’t run into trouble.
There are two cases possible:

Case 1. If t01 = t10 remove a zero from U1.
Case 2. If t01 = t10 + 1, remove a one from U0.

To generate a sequence of length n + 1, let X1 = 0. Let X2 be the result
of a draw from Ux; and, in general, let Xi be the result of a draw without
replacement from urn Uxi−1

. If the sequence generated ever forces a draw
from an empty urn, make a forced transition to the other urn. The adjust-
ment made above guarantees that such a forced jump can only be made once
from either urn and that the process generates all sequences of length n + 1
that start with zero and have transition matrix T with the same probability.
Theorem (7) says that every probability assignment on sequences of length
n+ 1 which is partially exchangeable for the transition matrix T is a unique
mixture of the

(
n
2

)
+ 1 different urn processes described above. Again, the

binomial approximation to the hypergeometric will lead to an infinite form
of de Finetti’s theorem in certain cases. This is further discussed in Sections
5 and 6.

Determining when a simple urn model such as the ones given above can
be found to describe the extreme partially exchangeable probabilities may
be difficult. For instance, we do not known how to extend the urn model for
Markov chains to processes taking three values.

5.5 Technical interpolation: Infinite Forms

Let us examine the results and problems for infinite sequences in the two
preceding examples.

(10) Example—2× 2 tables

Let X1, X2, X3, . . . be an infinite sequence of random variables each taking
values 0 or 1. Suppose each trial is labeled as Male or Female and as Treated
or Untreated and that the number of labels in each of the four possible cate-
gories (M,U), (M,T ), (F,U), (F, T ) is infinite. Suppose that for each n the
distribution of X1, X2, . . . , Xn is partially exchangeable with respect to the
sufficient statistic that counts the number of zeros and the number of ones
for each label. Thus, Tn = (a1, b1, a2, b2, a3, b3, a4, b4) where, for example, a1 is
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the number of ones labeled (M,U), b1 is the number of zeros labeled (M,U),
a2 is the number of ones labeled (M,T ), b2 is the number of zeros labeled
(M,T ) and so on. Then there is a unique probability distribution µ such that
for every n and each sequence x1, x2, . . . , xn

(11) pr(X1 = x1, . . . , Xn = xn) =
∫ 4∑
i=1

pai
i (1− pi)

bidµ(p1, p2, p3, p4)

where ai, bi are the values of Tn(x1, x2, . . . , xn). The result can be proved
by passing to the limit in the urn model (8) of 5.4.20

(12) Example—Markov chains

Let X1, X2, . . . be an infinite sequence of random variables each taking
values 0 or 1. For simplicity assume X1 = 0. Suppose that for each n the
joint distribution of X1, . . . , Xn is partially exchangeable with respect to the
matrix of transition counts. Suppose that the following recurrence condition
is satisfied

(13) P (Xn = 0 infinitely often) = 1.

Then there is a unique probability distribution p such that for every n, and
each sequence x2, x3, . . . , xn of zeros and ones

(14) P (X1 = 0, X2 = x2, . . . , Xn = xn) =
∫
pt1111 (1−p11)

t10pt0000 (1−p00)
t01dµ(p11, p00)

where tij are the four entries of the transition matrix of x1, x2, . . . , xn.

De Finetti appears to state (pp. 218—219 of de Finetti [1974]) that the
representation (14) is valid for every partially exchangeable probability as-
signment in this case. Here is an example to show that the representation
(14) need not hold in the absence of the recurrence condition (13). Consider
the probability assignment which goes 001111111... (all ones after two zeros)
with probability one. This probability assignment is partially exchangeable
and not representable in the form (14). It is partially exchangeable because,
for any it, the first it symbols of this sequence form the only sequence with
transition matrix

(
1
0

1
n−3

)
. To see that it is not representable in the form (14),

write pk for the probability that the last zero occurs at trial k(k = 1, 2, 3, . . .).
For a mixture of Markov chains the numbers pk can be represented as

(15) pk = c
∫ 1
0 p

k
00(1− p00)dµ(p00) k = 1, 2, . . . ,

20A different proof is given in G. Link’s chapter in R. Jeffrey (ed.) (1980).
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where c is the probability mass the mixing distribution puts on p11 = 1.
The representation (15) implies that the numbers pk are decreasing. For the
example 001111111..., p1 = 0, p2 = 1, p3 = p4 = . . . = 0. So this example
doesn’t have a representation as a mixture of Markov chains. A detailed dis-
cussion of which partially exchangeable assignments are mixtures of Markov
chains is in Diaconis and Freedman (1978b).

When can we hope for representations like (3), (11), and (14) in terms of
averages over a naturally constructed “parameter space”?

The theory we have developed for such representations still uses the nota-
tion of a statistic T . Generally, the statistic will depend on the sample size n
and one must specify the way the different Tn’s interrelate.21 Lauritzen (1973)
compares S-structure with several other ways of linking together sufficient
statistics. We have worked with a somewhat different notion in Diaconis and
Freedman (1978c) and developed a theory general enough to include a wide
variety of statistical models.

De Finetti sketches out what appears to be a general theory in terms
of what he calls the type of an observation. In de Finetti (1938) he only
gives examples which generalize the examples of 2 × 2 tables. Here things
are simple. In the example there are four types of observations depending on
the labels (M,U), (M,T ), (F,U), (F, T ). In general, for each i we observe the
value of another variable giving information like sex, time of day, and so on.
An analog of (11) clearly holds in these cases. In de Finetti (1974), Section
9.6.2, the type of an observation is allowed to depend on the outcome of
past observations as in our Markov chain example. In this example there are
three types of observations—observations Xi that follow a 0 are of type zero;
observations Xi that follow a 1 are of type one; and the first observation X1

is of type 2. For the original case of exchangeability there is only one type.

In attempting to define a general notion of type we thought of trying to
define a type function tn : 2n → {1, 2, . . . , r}n which assigns each symbol in a
string a “type” depending only on past symbols. If there are r types, then it
is natural to consider the statistic Tn(x1, . . . , xn) = (a1, b1, . . . , ar, br), where
ai, is the number of ones of type i and bi is the number of zeros of type i.
We suppose that the type functions tn, were chosen so that the statistics Tn
had what Lauritzen (1973) has called

∑
structure—Tn+1 can be computed

from Tn and xn+1. Under these circumstances we hoped that a probability
pr which was partially exchangeable with respect to the Tn’s would have a

21Freedman (1962b) introduced the notion of S structures—in which, roughly,
from the value of Tn(x1, x2, . . . , xn) and Tm(xn+1, xn+2, . . . , xn+m) one can compute
Tn+m(x1, x2, . . . , xn+m).
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representation of the form

(16) pr{X1 = x1, . . . , Xn = xn} =
∫ n∏
i=1

pai
i (1− pi)

bidµ(p1, . . . , pr)

for some measure µ.

The following contrived counterexample indicates the difficulty. There will
be two types of observations. However, there will be some partially exchange-
able probabilities which fail to have the representation (16), even though the
number of observations of each type becomes infinite.

Example. You are observing a sequence of zeros and onesX0, X1, X2, X3, . . ..
You know that one of 3 possible mechanisms generate the process:

• All the positions are exchangeable.

• The even positions X0, X2, X4, . . . , are exchangeable with each other
and the odd positions are generated by reading off a fixed reference
sequence x of zeros and ones.

• The even positions X0, X2, X4 . . . , are exchangeable with each other
and the odd positions are generated by reading off the complement x̄
(the complement has x̄j = 1− xj).

Knowing that the reference sequence is x = 11101110 . . ., you keep track of
two types of Xi. If i is odd and all the preceding Xj with j odd lead to a
sequence which matches x or x̄, you call i of type 1. In particular, X1 and
X3 are always of type 1. You count the number of zeros and ones of each
type. Let Tn = (a1, b1, a2, b2) be the type counts at time n. Any process of
the kind described above is partially exchangeable for these Tn. Moreover,
the sequence Tn has

∑
structure. Now consider the process which is fair coin-

tossing on the even trials and equals the ith coordinate of x on trial 2i− 1.
The number of zeros and ones of each type becomes infinite for this process.
However, the process cannot be represented in the form (16). The class of all
processes with these Tn’s is studied in Diaconis and Freedman (1978c) where
the extreme points are determined.

We do not know for which type functions the representation (16) will hold.
Some cases when parametric representation is possible have been determined
by Martin-Löf (1970, 1974) and Lauritzen (1976). A general theory of partial
exchangeability and more examples are in Diaconis and Freedman (1978c).
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5.6 Concluding Remarks

1. Some Bayesians are willing to talk about “tossing a coin with unknown p”.
For them, de Finetti’s theorem can be interpreted as follows: If a sequence
of events is exchangeable, then it is like the successive tosses of a p-coin with
unknown p. Other Bayesians do not accept the idea of p coins with unknown
p: de Finetti is a prime example. Writers on subjective probability have sug-
gested that de Finetti’s theorem bridges the gap between the two positions.
We have trouble with this synthesis and the following quote indicates that
de Finetti has reservations about it:22

The sensational effect of this concept (which went well beyond its
intrinsic meaning) is described as follows in Kyburg and Smokler’s
preface to the collection Studies in subjective probability which
they edited (pp. 13—14).

In a certain sense the most important concept in the subjective
theory is that of “exchangeable events”. Until this was introduced
(by de Finetti (1931)) the subjective theory of probability re-
mained little more than a philosophical curiosity. None of those
for whom the theory of probability was a matter of knowledge or
application paid much attention to it. But, with the introduction
of the concept of “equivalence or symmetry” or “exchangeabil-
ity”, as it is now called, a way was discovered to link the notion
of subjective probability with the classical problem of statistical
inference.

It does not seem to us that the theorem explains the idea of a coin with un-
known p. The main point is this: Probability assignments involving mixtures
of coin tossing were used by Bayesians long before de Finetti. The theorem
gives a characterizing feature of such assignments—exchangeability—which
can be thought about in terms involving only opinions about observable
events.

The connection between mixtures and exchangeable probability assign-
ments allows a subjectivist to interpret some of the classical calculations
involving mixtures. For example, consider Laplace’s famous calculation of
the chance that the Sun will rise tomorrow given that it has risen on n − 1
previous days (5.1.3, example 2). Laplace took a uniform prior on [0, 1] and
calculated the chance as the posterior mean of the unknown parameter:

22‘Probability: Beware of falsifications!’ Scientia 111 (1976) 283-303.
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pr(Sun rises tomorrow | Has risen on n−1 previous days.) =

∫ 1

0
pndµ∫ 1

0
pn−1dµ

= n
n+1

.

The translation of this calculation is as follows: Let Xi = 1 if the Sun rises
on day i, Xi = 0 otherwise. Laplace’s uniform mixture of coin tossing is ex-
changeable and P (X1 = 1, . . . , Xk = 1) = 1

k+1
, k = 1, 2, 3, . . .. With this

allocation, P (Xn = 1|X1 = 1, . . . , Xn−1 = 1) = P (X1=1...Xn=1)
P (X1=1,...,Xn−1=1)

= n
n+1

. A
similar interpretation can be given to any calculation involving averages over
a parameter space.

Technical Interpolations (2 - 4)

2. The exchangeable form of de Finetti’s theorem (1) is also a useful com-
putational device for specifying probability assignments. The result is more
complicated and much less useful in the case of real valued variables. Here
there is no natural notion of a parameter p. Instead, de Finetti’s theorem says
real valued exchangeable variables, {Xi}∞i=1, are described as follows: There is
a prior measure π on the space of all probability measures on the real line such
that pr(X1 ∈ A1, . . . , Xn ∈ An) =

∫ ∏n
i=1 p(Xi ∈ Ai)dπ(p). The space of all

probability measures on the real line is so large that it is difficult for subjec-
tivists to describe personally meaningful distributions on this space.23 Thus,
for real valued variables de Finetti’s theorem is far from an explanation of the
type of parametric estimation—involving a family of probability distributions
parametrized by a finite dimensional parameter space—that Bayesians from
Bayes and Laplace to Lindley have been using in real statistical problems.

In some cases, more restrictive conditions than exchangeability are rea-
sonable to impose, and do single out tractable classes of distributions. Here
are some examples adapted from Freedman.24

Example: Scale mixtures of normal variables

When can a sequence of real valued variables {Xi}1 ≤ i < ∞ be repre-
sented as a scale mixture of normal variables

(19) pr(X1,≤ t1, . . . , Xn ≤ tn) =
∫ ∞
0

∏n
i=1 Φ(δti)dπ(δ)

23Ferguson, T. “Prior distributions on spaces of probability measures”, Ann. Stat. 2
(1974) 615–629 contains examples of the various attempts to choose such a prior.

24Freedman, D. “Mixtures of Markov processes”, Ann. Math. Stat. 33 (1962a) 114–118,
“Invariants under mixing which generalize de Finetti’s theorem”, Ann. Math. Stat. 33
(1962b) 916–923.
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where Φ(t) = 1√
2π

∫ t
−∞ e−t

2/2dt?

In Freedman (1963) it is shown that a necessary and sufficient condition
for (19) to hold is that for each n the joint distribution of X1, X2, . . . , Xn be
rotationally symmetric. This result is related to the derivation of Maxwell’s
distribution for velocity in a Monatomic Ideal Gas25

Example: Poisson distribution

Let Xi (1 ≤ i < ∞) take integer values. In Freedman (1962) it is shown
that a necessary and sufficient condition for Xi to have a representation as
a mixture of Poisson variables,

pr(X1 = a1, . . . , Xn = an) =
∫ ∞

0

n∏
i=1

e−λ
λai

ai!
dπ(λ)

is as follows: For every n the joint distribution of X1, X2, . . . , Xn given
Sn =

∑n
i=1 Xi must be multinomial, like the joint distribution of Sn balls

dropped at random into n boxes.

Many further examples and some general theory are given in Diaconis and
Freedman (1978c).

3. De Finetti’s generalizations of partial exchangeability are closely con-
nected to work of P. Martin-Löf in the 1970’s.26 Martin-Löf does not seem to
work in a Bayesian context, rather he takes the notion of sufficient statistic
as basic and from this constructs the joint distribution of the process in much
the same way as de Finetti. Martin-Löf connects the conditional distribution
of the process with the microcanonical distributions of statistical mechan-
ics. The idea is to specify the conditional distribution of the observations
given the sufficient statistics. In this paper, and in Martin-Löf’s work, the
conditional distribution has been chosen as uniform. We depart from this
assumption in Diaconis and Freedman (1978c) as we have in the example of
mixtures of Poisson distributions. The families of conditional distributions
we work with still “project” in the right way. This projection property al-
lows us to use the well developed machinery of Gibbs states as developed by

25Khinchin, A., Mathematical foundations of statistical mechanics (1949), Chap. VI.
26Martin-Löf’s work appears most clearly spelled out in a set of mimeographed lecture

notes (Martin-Löf [1970]), unfortunately available only in Swedish. A technical treatment
of part of this may be found in Martin-Löf (1974). Further discussion of Martin-Löf’s ideas
are in Lauritzen (1973), (1975) and the last third of Tjur (1974). These references contain
many new examples of partially exchangeable processes and their extreme points. We have
tried to connect Martin-Löf’s treatment to the general version of de Finetti’s theorem we
have derived in Diaconis and Freedman (1978c).
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Lanford (1973), Fȯlmer (1974), and Preston (1977).

4. In this paper we have focused on generalizations of exchangeability in-
volving a statistic. A more general extension involves the idea of invariance
with respect to a collection of transformations of the sample space into itself.
This contains the idea of partial exchangeability with respect to a statistic
since we can consider the class of all transformations leaving the statistic in-
variant. A typical case which cannot be neatly handled by a finite dimensional
statistic is de Finetti’s theorem for zero/one matrices. Here the distribution
of the doubly infinite random matrix is to be invariant under permutations
of the rows and columns. David Aldous has recently identified the extreme
points of these matrices and shown that no representation as mixture of finite
parameter processes is possible.

5. Is exchangeability a natural requirement on subjective probability as-
signments? It seems to us that much of its appeal comes from the (forbid-
den?) connection with coin tossing. This is most strikingly brought out in
the thumbtack, Markov chain example. If someone were thinking about as-
signing probability to 10 flips of the tack and had never heard of Markov
chains it seems unlikely that they would hit on the appropriate notion of
partial exchangeability. The notion of symmetry seems strange at first. Its
appeal comes from the connection with Markov chains with unknown transi-
tion probabilities. A feeling of naturalness only appears after experience and
reflection.
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Chapter 6

Choosing

This is an exposition of the framework for decision-making that Ethan Bolker
and I floated about 40 years ago, in which options are represented by propo-
sitions and any choice is a decision to make some proposition true.1 It now
seems to me that the framework is pretty satisfactory, and I shall present it
here on its merits, without spending much time defending it against what I
have come to see as fallacious counterarguments.

6.1 Preference Logic

To the option of making the proposition A true corresponds the condi-
tional probability distribution pr(· · · |A), where the unconditional distribu-
tion pr(· · ·) represents your prior probability judgment—prior, that is, to de-
ciding which option-proposition to make true. And your expectation of utility
associated with the A-option will be your conditional expectation ex(u|A)
of the random variable u (for “utility”). This conditional expectation is also
known as your desirability for truth of A, and denoted ‘desA’:

desA = ex(u|A)

Now preference ( ), indifference (≈), and preference-or-indifference (!) go
by desirability, so that

1See Bolker (1965, 1966, 1967) and Jeffrey (1965, 83, 90, 96). When Bolker and I met,
in 1963, I had worked out the logic as in 6.1 and was struggling to prove what turned out
to be the wrong uniqueness theorem, while Bolker proved to have found what I needed: a
statement and proof of the right uniqueness theorem (along with a statement and proof
of the corresponding existence theorem—see chapter 9 of Jeffrey 1983 or 1990).

102
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A  B if desA > desB,
A ≈ B if desA = desB,
A ! B if desA ≥ desB,

and similarly for ≺ and #. Note that it is not only option-propositions that
appear in preference rankings; you can perfectly well prefer a sunny day
tomorrow (truth of ‘Tomorrow will be sunny’) to a rainy one even though
you know you cannot affect the weather.2

The basic connection between pr and des is that their product is additive,
just as pr is.3 Here is another way of saying that, in a different notation:

Basic probability-desirabiliy link

If the Si form a partitioning of �, then

(1) des(A) =
∑
i

des(Si ∧ A)pr(Si|A).

Various principles of preference logic can now be enunciated, and fallacies
identified, as in the following samples. The first is a fallacious mode of infer-
ence according to which denial reverses preferences. (The symbol ‘$’ means
valid implication: that the premise, to the left of the turnstyle; validly implies
the conclusion, to its right.)

6.1.1 Denial Reverses Preferences: A  B $ ¬B  ¬A.

Counterexample: Death before dishonor. Suppose you are an exemplary
Roman of the old school, so that if you were dishonored you would certainly
be dead—if necessary, by suicide: pr(death|dishonor) = 1. Premise: A  B,
you prefer death (A) to dishonor (B). Then 1.1.1 is just backward; it must
be that you prefer a guarantee of life (¬A) to a guarantee of not being
dishonored (¬B), for in this particular example your conditional probability
pr(A|B) = 1 makes the second guarantee an automatic consequence of the
first.

2Rabinowicz (2002) effectively counters arguments by Levi and Spohn that Dutch
Book arguments are untrustworthy in cases where the bet is on the agent’s own future
betting behavior, since “practical deliberation crowds out self-prediction” much as the
gabble of cell-phone conversations may make it impossible to pursue simple trains of
thought in railway cars. The difficulty is one that cannot arise where it is this very uture
behavior that is at issue.

3Define τ(H) = pr(H)des(H); then τ(H1∨H2∨. . .) =
∑

i τ(Hi) provided τ(Hi∧Hj) =
0 whenever i = j.
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6.1.2 If A ∧B $ ⊥ and A ! B then A ! A ∨B ! B.

Proof. Set w = pr(A|A∨B). Then des(A∨B) = w(desA)+(1−w)(desB).
This is a convex combination of desA and desB, which must therefore lie
either between them or at one or the other. This one is valid.

6.1.3 The “Sure Thing” (or “Dominance”) Principle:
(A ∧ B) � C, (A ∧ ¬B) � C � A � C

In words, with premises to the left of the turnstyle: If you would prefer A to
C knowing that B is true, and knowing that B is false, you prefer A to C.

This snappy statement is not a valid form of inference. Really? If A is
better than C no matter how other things (B) turn out, then surely A is as
good as B. How could that be wrong?

Well, here is one way, with C = Quit smoking in 6.1.3:

Counterexample, The Marlborough Man, “MM”. He reasons: ‘Sure,
smoking (A) makes me more likely to die before my time (B), but a smoker
can live to a ripe old age. Now if I am to live to a ripe old age I’d rather do
it as a smoker, and if not I would still enjoy the consolation of smoking. In
either case, I’d rather smoke than quit. So I’ll smoke. In words, again:

Premise: Smoking is preferable to quitting if I die early.

Premise: Smoking is preferable to quitting if I do not die early.

Conclusion: Smoking is preferable to quitting.

I have heard that argument put forth quite seriously. And there are versions of
decision theory which seem to endorse it, but the wise heads say ‘Nonsense,
dear boy, you have chosen a partition {B,¬B} relative to which the STP
fails. But there are provisos under which the principle is quite trustworthy.
Sir Ronald Fisher (1959) actually sketched a genetic scenario in which that
would be the case. (See 6.3.1 below.) But he never suggested that 6.1.3, the
unrestricted STP, is an a priori justification for the MM’s decision.

For the record, this is the example that L. J. Savage (1954), the man who
brought us the STP, used to motivate it.

A businessman contemplates buying a certain piece of property.
He considers the outcome of the next presidential election relevant
to the attractiveness of the purchase. So, to clarify the matter
for himself, he asks whether he would buy if he knew that the
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Republican candidate were going to win, and decides that he
would do so. Similarly, he considers whether he would buy if he
knew that the Democratic candidate were going to win, and again
finds that he would do so. Seeing that he would buy in either
event, he decides that he should buy, even though he does not
know which event obtains, or will obtain, as we would ordinarioy
say. It is all too seldom that a decision can be arrived at on
the basis of the principle used by this businessman, but, except
possibly for the assumption of simple ordering, I know of no other
extralogical principle governing decisions that finds such ready
acceptance. (Savage 1954, p. 21)

Savage’s businessman and my Marlborough Man seem to be using exactly
the same extralogical principle (deductive logic, that is). What is going on?

BJ-ing the MM

This is how it normally turns out that people with the MM’s preferences
normally turn out to prefer quitting to smoking—even if they cannot bring
themselves to make the preferential choice. It’s all done with conditional
probabilities. Grant the MM’s preferences and probabilities as on the fol-
lowing assumptions about desirabilities and probabilities, where ‘long’ and
‘shorter’ refer to expected length of life, and w, s, l (“worst, smoke, long”)
are additive components of desirability where s, l > 0 and w + s+ l < 1.

des(long ∧ smoke) = l + s+ w pr(long|smoke) = p

des(long ∧ quit) = l + w pr(long|quit) = q

des(shorter ∧ smoke) = s+ w pr(shorter|smoke) = 1− p

des(shorter ∧ quit) = w pr(shorter|quit) = 1− q

Question: How must MM’s conditional probabilities p, q be related in order
for the B-J figure of merit to advise his quitting instead continuing to smoke?

Answer: des(quit) > des(smoke) if and only if (l+s+w)p+(s+w)(1−p) >

(l + w)q + w(1− q). Then BJ tells MM to smoke iff p− q <
s

l
.

These are the sorts of values of p and q that MM might have gathered
from Consumers Union (1963): p = .59, q = .27. Then .32 > s/l where,
by hypothesis, s/l is positive and less than 1; and as long as MM is not so
addicted or otherwise dedicated to smoking that the increment of desirability
from it is at least 32% of the increment from long life, formula (1) in the basic
probability-desirability link will have him choose to quit.
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BJ-ing the STP

If we interpret Savage (1954) as accepting the basic probability-desirability
link (1) as well as the STP, he must be assuming that acts are probabilistically
independent of states of nature. The businessman must then consider that
his buying or not will have no influence on the outcome of the election; he
must then see p and q as equal, and accept the same reasoning for the MM
and the businessman: choose the dominant act (smoke, buy).4

6.1.4 Bayesian Frames.

Given a figure of merit for acts, Bayesian decision theory represents a certain
structural concept of rationality. This is contrasted with substantive criteria
of rationality having to do with the aptness of particular probability and
utility functions in particular predicaments. With Donald Davidson5 I would
interpret this talk of rationality as follows. What remains when all substantive
questions of rationality are set aside is bare logic, a framework for tracking
your changing judgments, in which questions of validity and invalidity of
argument-forms can be settled as illustrated above. The discussion goes one
way or another, depending on particulars of the figure of merit that is adopted
for acts. Here we compare and contrast the Bolker-Jeffrey figure of merit with
Savage’s.

A complete, consistent set of substantive judgments would be represented
by a “Bayesian frame” consisting of (1) a probability distribution over a
space Ω of “possible worlds”, (2) a function u assigning “utilities” u(ω) to
the various worlds in ω ∈ Ω, and (3) an assignment of subsets of Ω as values
of the sentence-letters ‘A’, ‘B’, . . .. Then subsets A ⊆ Ω represent propo-
sitions; A is true in world ω iff ω ∈ A; and conjunction, disjunction and
denial of propositions is represented by the intersection, union and comple-
ment with respect to Ω of the corresponding subsets. In any logic, validity
of an argument is truth of the conclusion in every frame in which all the
premises are true. In a Bayesian logic of decision, Bayesian frames represent
possible answers to substantive questions of rationality; we can understand
that without knowing how to determine whether particular frames would be
substantively rational for you on particular occasions. So in Bayesian decision
theory we can understand validity of an argument as truth of its conclusion
in any Bayesian frame in which all of its premises are true, and understand

4This is a reconstructionist reading of Savage (1954), not widely shared.
5Davidson (1980) 273-4. See also Jeffrey (1987) and sec. 12.8 of Jeffrey (1965, 1983,

1990).
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consistency of a judgment (say, affirming A  B while denying ¬B  ¬A)
as existence of a non-empty set of Bayesian frames in which the judgment
is true. On this view, bare structural rationality is simply representability in
the Bayesian framework.

6.2 Causality

In decision-making it is deliberation, not observation, that changes your prob-
abilities. To think you face a decision problem rather than a question of fact
about the rest of nature is to expect whatever changes arise in your probabil-
ities for those states of nature during your deliberation to stem from changes
in your probabilities of choosing options. In terms of the analogy with me-
chanical kinematics: as a decision-maker you regard probabilities of options
as inputs driving the mechanism, not driven by it.

Is there something about your judgmental probabilities which shows that
you are treating truth of one proposition as promoting truth of another—
rather than as promoted by it or by truth of some third proposition which
also promotes truth of the other? Here the promised positive answer to this
question is used to analyze puzzling problems in which we see acts as mere
symptoms of conditions we would promote or prevent if we could. Such “New-
comb problems” (Nozick, 1963, 1969, 1990) seem to pose a challenge to the
decision theory floated in Jeffrey (1965, 1983, 1990), where notions of causal
influence play no rôle. The present suggestion about causal judgments will be
used to question the credentials of Newcomb problems as decision problems.

The suggestion is that imputations of causal influence do not show up
simply as momentary features of probabilistic states of mind, but as intended
or expected features of their evolution. Recall the following widely recognized
necessary condition for the judgment that truth of one proposition (“cause”)
promotes truth of another (“effect”):

Correlation: pr(effect|cause) > pr(effect|¬cause).

But aside from the labels, what distinguishes cause from effect in this relation-
ship? The problem is that it is a symmetrical relationship, which continues to
hold when the labels are interchanged: pr(cause|effect) > pr(cause|¬effect).
It is also problematical that correlation is a relationship between contempo-
raneous values of the same conditional probability function.
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What further condition can be added, to produce a necessary and sufficient
pair? With Arntzenius (1990), I suggest the following answer, i.e., rigidity
relative to the partition {cause,¬cause}.6

Rigidity. Constancy of pr(effect|cause)
and pr(effect|¬cause) as pr(cause) varies.

Rigidity is a condition on a variable (‘pr’) that ranges over a set of probabil-
ity functions. The functions in the set represent ideally definite momentary
probabilistic states of mind for the deliberating agent, as they might be at
different times. This is invariance of conditional probabilities (3.1), shown
in 3.2 to be equivalent to probability kinematics as a mode of updating. In
statistics, the corresponding term is ‘sufficiency’: A sufficient statistic is a
random variable whose sets of constancy (“data”) form a partition satisfying
the rigidity condition. Clearly, pr can vary during deliberation, for if delib-
eration converges toward choice of a particular act, the probability of the
corresponding proposition will rise toward 1. In general, agents’s intentions
or assumptions about the kinematics of pr might be described by maps of
possible courses of evolution of probabilistic states of mind—often, very sim-
ple maps. These are like road maps in that paths from point to point indicate
feasibility of passage via the anticipated mode of transportation, e.g., ordi-
nary automobiles, not “all terrain” vehicles. Your kinematical map represents
your understanding of the dynamics of your current predicament, the possible
courses of development of your probability and desirability functions.

The Logic of Decision used conditional expectation of utility given an act
as the figure of merit for the act, namely, its desirability, des(act). Newcomb
problems (Nozick 1969) led many to see that figure as acceptable only on
special causal assumptions, and a number of versions of “causal decision
theory” have been proposed as more generally acceptable.7 But if Newcomb
problems are excluded as bogus, then in genuine decision problems des(act)
will remain constant throughout deliberation, and will be an adequate figure
of merit.

Now there is much to be said about Newcomb problems, and I have said
quite a lot elsewhere, as in Jeffrey (1996), and I am reluctant to finish this

6In general the partition need not be twofold. Note that if ‘cause’ denotes one element
of a partition and ‘¬cause’ denotes the disjunction of all other elements, ¬cause need not
satisfy the rigidity condition even though all elements of the original partition do.

7In the one I like best (Skyrms 1980), the figure of merit for choice of an act is the
agent’s expectation of des(A) on a partition K of causal hypotheses:
(CFM) Causal figure of merit relative to K = exK(u|A).
In the discrete case, K = {Kk : k = 1, 2, . . .} and the CFM is

∑
k des(A ∧Kk).
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book with close attention to what I see as a side-issue. I would rather finish
with an account of game theory, what Robert Aumann calls “interactive
decision theory”. But I don’t seem to have time for that, and if you have
not been round the track with Newcomb problems you may find the rest
worthwhile, so I leave much of it in, under the label “supplements”.

6.3 Supplements: Newcomb Problems

Preview. The simplest sort of decision problem is depicted in Fig. 1(a),
where C and ¬C represent states of affairs that may incline you one way or
the other between options A and ¬A, and where your choice between those
options may tend to promote or prevent the state of affairs B. But there
is no probabilistic causal influence of ±C directly on ±B, without passing
through ±A. Fig. 1(b) depicts the simplest “Newcomb” problem, where the
direct probabilistic influence runs from ±C directly to ±A and to ±B, but
there is no direct influence of ±A on ±B. Thus, Newcomb problems are not
decision problems.

Stability of your conditional probabilities p = pr(B|A) and p′ =
pr(B|¬A) as your unconditional pr(A) varies is a necessary con-
dition for you to view ±A as a direct probabilistic influence on
truth or falsity of B.

6.3.1 “The Mild and Soothing Weed”

For smokers who see quitting as prophylaxis against cancer, preferability
goes by initial des(act) as in Fig 1a; but there are views about smoking and
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cancer on which these preferences might be reversed. Thus, R. A. Fisher
(1959) urged serious consideration of the hypothesis of a common inclining
cause of (A) smoking and (B) bronchial cancer in (C) a bad allele of a
certain gene, posessors of which have a higher chance of being smokers and
of developing cancer than do posessors of the good allele (independently,
given their allele). On that hypothesis, smoking is bad news for smokers but
not bad for their health, being a mere sign of the bad allele, and, so, of bad
health. Nor would quitting conduce to health, although it would testify to
the agent’s membership in the low-risk group.

On Fisher’s hypothesis, where acts ±A and states ±B are seen as inde-
pendently promoted by genetic states ±C, i.e., by presence (C) or absence
(¬C) of the bad allele of a certain gene, the kinematical constraints on pr
are the following. (Thanks to Brian Skyrms for this.)

Rigidity: The following are constant as c = pr(C) varies.

a = pr(A|C), a′ = pr(A|¬C), b = pr(B|C), b′ = pr(B|¬C)

Correlation:
p > p′, where p = pr(B|A) and p′ = pr(B|¬A)

Indeterminacy: None of a, b, a′, b′ are 0 or 1,

Independence: pr(A ∧B|C) = ab, pr(A ∧B|¬C) = a′b′.

Since in general, pr(F |G∧H) = pr(F ∧G|H)/pr(G|H), the independence
and rigidity conditions imply that ±C screens off A and B from each other
in the following sense.

Screening-off: pr(A|B ∧ C) = a, pr(A|B ∧ ¬C) = a′,

pr(B|A ∧ C) = b, pr(B|A ∧ ¬C) = b′.

Under these constraints, preference between A and ¬A can change as
pr(C) = c moves out to either end of the unit interval in thought-experiments
addressing the question “What would des(A)−des(¬A) be if I found I had the
bad/good allele?” To carry out these experiments, note that we can write p =

pr(B|A) = pr(A∧B)/pr(A) = pr(A|B∧C)pr(B|C)pr(C)+pr(A|B∧¬C)pr(B|¬C)pr(¬C)(1−c)
pr(A|C)pr(C)+pr(A|¬C)pr(¬C)

and similarly for p′ = pr(B|¬A). Then we have

p =
abc + a′b′(1− c)

ac + a′(1− c)
, p′ =

(1− a)bc + (1− a′)b′(1− c)

(1− a)c + (1− a′)(1− c)
.

Now final p and p′ are equal to each other, and to b or b′ depending on whether
final c is 1 or 0. Since it is c’s rise to 1 or fall to 0 that makes pr(A) rise
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or fall as much as it can without going off the kinematical map, the (quasi-
decision) problem has two ideal solutions, i.e., mixed acts in which the final
unconditional probability of A is the rigid conditional probability, a or a′,
depending on whether c is 1 or 0. But p = p′ in either case, so each solution
satisfies the conditions under which the dominant pure outcome (A) of the
mixed act maximizes des(±A). (This is a quasi-decision problem because
what is imagined as moving c is not the decision but factual information
about C.)

As a smoker who believes Fisher’s hypothesis you are not so much trying
to make your mind up as trying to discover how it is already made up. But
this may be equally true in ordinary deliberation, where your question “What
do I really want to do?” is often understood as a question about the sort of
person you are, a question of which option you are already committed to,
unknowingly. The diagnostic mark of Newcomb problems is a strange linkage
of this question with the question of which state of nature is actual—strange,
because where in ordinary deliberation any linkage is due to an influence
of acts ±A on states ±B, in Newcomb problems the linkage is due to an
influence, from behind the scenes, of deep states ±C on acts ±A and plain
states ±B. This difference explains why deep states (“the sort of person I
am”) can be ignored in ordinary decision problems, where the direct effect
of such states is wholly on acts, which mediate any further effect on plain
states. But in Newcomb problems deep states must be considered explicitly,
for they directly affect plain states as well as acts (Fig. 1).

In the kinematics of decision the dynamical role of forces can be played
by acts or deep states, depending on which of these is thought to influence
plain states directly. Ordinary decision problems are modelled kinematically
by applying the rigidity condition to acts as causes. Ordinarily, acts screen off
deep states from plain ones in the sense that B is conditionally independent
of ±C given ±A, so that while it is variation in c that makes pr(A) and pr(B)
vary, the whole of the latter variation is accounted for by the former (Fig.
1a). But to model Newcomb problems kinematically we apply the rigidity
condition to the deep states, which screen off acts from plain states (Fig.
1b). In Fig. 1a, the probabilities b and b′ vary with c in ways determined by
the stable a’s and p’s, while in Fig. 1b the stable a’s and b’s shape the labile
p’s as we have seen above:

p =
abc + a′b′(1− c)

ac + a′(1− c)
, p′ =

(1− a)bc + (1− a′)b′(1− c)

(1− a)c + (1− a′)(1− c)
.
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Similarly, in Fig. 1a the labile probabilities are

b =
apc + a′p′(1− c)

ac + a′(1− c
, b′ =

(1− a)pc + (1− a′)p′(1− c)

(1− a)c + (1− a′)(1− c)
.

While C and ¬C function as causal hypotheses, they do not announce
themselves as such, even if we identify them by the causal rôles they are
meant to play, as when we identify the “bad” allele as the one that promotes
cancer and inhibits quitting. If there is such an allele, it is a still unidentified
feature of human DNA. Fisher was talking about hypotheses that further
research might specify, hypotheses he could only characterize in causal and
probabilistic terms—terms like “malaria vector” as used before 1898, when
the anopheles mosquito was shown to be the organism playing that aetio-
logical rôle. But if Fisher’s science fiction story had been verified, the status
of certain biochemical hypotheses C and ¬C as the agent’s causal hypothe-
ses would have been shown by satisfaction of the rigidity conditions, i.e.,
constancy of pr(−|C) and of pr(−|¬C), with C and ¬C spelled out as tech-
nical specifications of alternative features of the agent’s DNA. Probabilistic
features of those biochemical hypotheses, e.g., that they screen acts off from
states, would not be stated in those hypotheses, but would be shown by inter-
actions of those hypotheses with pr, B and A, i.e., by truth of the following
consequences of the kinematical constraints.

pr(B|act ∧ C) = pr(B|C), P (B|act ∧ ¬C) = pr(B|¬C).

No purpose would be served by packing such announcements into the
hypotheses themselves, for even if true, such announcements would be re-
dundant. The causal talk, however useful as commentary, does no work in
the matter commented upon.8

6.3.2 The Flagship Newcomb Problem

Nozick’s (1969) flagship Newcomb problem resolutely fends off naturalism
about deep states, making a mystery of the common inclining cause of acts
and plain states while suggesting that the mystery could be cleared up in
various ways, pointless to elaborate. Thus, Nozick (1969) begins:

Suppose a being [call her ‘Alice’] in whose power to predict your
choices you have enormous confidence. (One might tell a science-
fiction story about a being from another planet, with an advanced

8See Joyce (2002); also Leeds (1984) in another connection.
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technology and science, who you know to be friendly, and so
on.) You know that this being has often correctly predicted your
choices in the past (and has never, so far as you know, made
an incorrect prediction about your choices), and furthermore you
know that this being has often correctly predicted the choices of
other people, many of whom are similar to you, in the particular
situation to be described below. One might tell a longer story,
but all this leads you to believe that almost certainly this being’s
predictionabout your choice in the situation to be discussed will
be correct. There are two boxes ...

Alice has surely put $1,000 in one box, and (B) she has left the second
box empty or she has (¬B) put $1,000,000 in it, depending on whether she
predicts that you will (A2) take both boxes, or that you will (A1) take only
one—the one with $1000 in it. (In the previous notation, A2 = A.)

Here you are to imagine yourself in a probabilistic frame of mind where
your desirability for A1 is greater than that for A2 because although you
think A’s truth or falsity has no influence on B’s, your conditional probability
p = pr(B|A1) is ever so close to 1 and your p′ = pr(B|A2) is ever so close to 0.
Does that seem a tall order? Not to worry! High correlation is a red herring;
a tiny bit will do, e.g., if desirabilities are proportional to dollar payoffs, then
the 1-box option, ¬A, maximizes desirability as long as[?] is greater than
.001.

To see how that might go numerically, think of the choice and the predic-
tion as determined by independent drawings by the agent and the predictor
from the same urn, which contains tickets marked ‘2’ and ‘1’ in an unknown
proportion x : 1-x. Initially, the agent’s unit of probability density over the
range [0,1] of possible values of x is flat (Fig. 2a), but in time it can push
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toward one end of the unit interval or the other, e.g., as in Fig. 2b, c.9 At t =
997 these densities determine the probabilities and desirabilities in Table 3b
and c, and higher values of t will make desA1 − desA2 positive. Then if t is
calibrated in thousandths of a minute this map has the agent preferring the
2-box option after a minute’s deliberation. The urn model leaves the deep
state mysterious, but clearly specifies its mysterious impact on acts and plain
states.

The irrelevant detail of high correlation or high K = pr(B|A)−pr(B|¬A),
was a bogus shortcut to the 1-box conclusion, obtained if K is not just high
but maximum, which happens when p = 1 and p′ = 0. This means that the
“best” and “worst” cells in the payoff table have unconditional probability 0.
Then taking both boxes means a thousand, taking just one means a million,
and preference between acts is clear, as long as p − p′ is neither 0 nor 1,
and remains maximum, 1. The density functions of Fig. 2 are replaced by
probability assignments r and 1 − r to the possibilities that the ratio of 2-
box tickets to 1-box tickets in the urn is 1:0 and 0:1, i.e., to the two ways
in which the urn can control the choice and the prediction deterministically
and in the same way. In place of the smooth density spreads in Fig. 2 we
now have point-masses r and 1 − r at the two ends of the unit interval,
with desirabilities of the two acts constant as long as r is neither 0 nor 1.
Now the 1-box option is preferable throughout deliberation, up to the very
moment of decision.10 But of course this reasoning uses the premise that
pr(predict 2|take 2) − pr(predict 2|take 1) = β = 1 through deliberation, a
premise making abstract sense in terms of uniformly stocked urns, but very
hard to swallow as a real possibility.

9In this kinematical map pr(A) =
∫ 1

0
xt+1f(x)d(x) and pr(B|A) =

∫ 1

0
xt+2f(x)dx/pr(A)

with f(x) as in Fig. 2(b) or (c). Thus, with f(x) as in (b), pr(A) = (t + 1)/(t + 3) and
pr(B|A) = (t + 2)/(t + 3). See Jeffrey, 1988.

10At the moment of decision the desirabilities of shaded rows in (b) and (c) are not
determind by ratios of unconditional probabilities, but continuity considerations suggest
that they remain good and bad, respectively.
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6.3.3 Hofstadter

Hofstadter (1983) saw prisoners’s dilemmas as down-to-earth Newcomb prob-
lems. Call the prisoners Alma and Boris. If one confesses and the other does
not, the confessor goes free and the other serves a long prison term. If nei-
ther confesses, both serve short terms. If both confess, both serve intermedi-
ate terms. From Alma’s point of view, Boris’s possible actions (B, confess,
or ¬B, don’t) are states of nature. She thinks they think alike, so that her
choices (A, confess, ¬A, don’t) are pretty good predictors of his, even though
neither’s choices influence the other’s. If both care only to minimize their
own prison terms this problem fits the format of Table 1(a). The prisoners
are thought to share a characteristic determining their separate probabilities
of confessing in the same way – independently, on each hypothesis about
that characteristic. Hofstadter takes that characteristic to be rationality, and
compares the prisoners’s dilemma to the problem Alma and Boris might have
faced as bright children, independently working the same arithmetic prob-
lem, whose knowledge of each other’s competence and ambition gives them
good reason to expect their answers to agree before either knows the answer:
“If reasoning guides me to [... ], then, since I am no different from anyone else
as far as rational thinking is concerned, it will guide everyone to [... ].” The
deep states seem less mysterious here than in the flagship Newcomb problem;
here they have some such form as Cx′′ = We are both likely to get the right
answer, i.e., x. (And here ratios of utilities are generally taken to be on the
order of 10:1 instead of the 1000:1 ratios that made the other endgame so
demanding. With utilities 0, 1, 10, 11 instead of 0, 1, 1000, 1001, indifference
between confessing and remaining silent now comes at = 10heighten simi-
larity to the prisoners’s dilemma let us suppose the required answer is the
parity of x, so that the deep states are simply C = We are both likely to get
the right answer, i.e., even, and ¬C = We are both likely to get the right
answer, i.e., odd.

What’s wrong with Hofstadter’s view of this as justifying the coöperative
solution? [And with von Neumann and Morgenstern’s (p. 148) transcendental
argument, remarked upon by Skyrms (1990, pp. 13-14), for expecting rational
players to reach a Nash equilibrium?] The answer is failure of the rigidity
conditions for acts, i.e., variability of pr(He gets x | I get x) with pr(I get x)
in the decision maker’s kinematical map. It is Alma’s conditional probability
functions pr(−| ± C) rather than pr(−| ± A) that remain constant as her
probabilities for the conditions vary. The implausibility of initial des(act) as
a figure of merit for her act is simply the implausibility of positing constancy
of as her probability function pr evolves in response to changes in pr(A). But
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the point is not that confessing is the preferable act, as causal decision theory
would have it. It is rather that Alma’s problem is not indecision about which
act to choose, but ignorance of which allele is moving her.

Hofstadter’s (1983) version of the prisoners’s dilemma and the flagship
Newcomb problem have been analyzed here as cases where plausibility de-
mands a continuum [0,1] of possible deep states, with opinion evolving as
smooth movements of probability density toward one end or the other draw
probabilities of possible acts along toward 1 or 0. The problem of the smoker
who believes Fisher’s hypothesis was simpler in that only two possibilities
(C,¬C) were allowed for the deep state, neither of which determined the
probability of either act as 0 or 1.

6.3.4 Conclusion

The flagship Newcomb problem owes its bizarrerie to the straightforward
character of the pure acts: surely you can reach out and take both boxes, or
just the opaque box, as you choose. Then as the pure acts are options, you
cannot be committed to either of the non-optional mixed acts. But in the
Fisher problem, those of us who have repeatedly “quit” easily appreciate the
smoker’s dilemma as humdrum entrapment in some mixed act, willy nilly.
That the details of the entrapment are describable as cycles of temptation,
resolution and betrayal makes the history no less believable—only more petty.
Quitting and continuing are not options, i.e., prA ≈ 0 and prA ≈ 1 are not
destinations you think you can choose, given your present position on your
kinematical map, although you may eventually find yourself at one of them.
The reason is your conviction that if you knew your genotype, your value of
pr(A) would be either a or a′, neither of which is ≈ 0 or ≈ 1. (Translation:
“At places on the map where pr(C) is at or near 0 or 1, prA is not.”) The
extreme version of the story, with a ≈ 1 and a′ ≈ 0, is more like the flagship
Newcomb problem; here you do see yourself as already committed to one of
the pure acts, and when you learn which that is, you will know your genotype.

I have argued that Newcomb problems are like Escher’s famous staircase
on which an unbroken ascent takes you back where you started.11 We know
there can be no such things, but see no local flaw; each step makes sense, but
there is no way to make sense of the whole picture; that’s the art of it.12

11Escher, 1960), based on Penrose and Penrose, (1958) 31-33; see Escher 1989, p. 78.
12Elsewhere I have accepted Newcomb problems as decision problems, and accepted “2-

box solutions” as correct. In Jeffrey 1983, sec. 1.7 and 1.8, I proposed a new criterion of
acceptability of an act—“ratifiability—which proved to break down in certain cases (see
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In writing The Logic of Decision in the early 1960’s I failed to see Bob
Nozick’s deployment of Newcomb’s problem in his Ph. D. dissertation as a
serious problem for the theory floated in chapter 1 and failed to see the mate-
rial on rigidity in chapter 11 as solving that problem. It took a long time for
me to take the “causal” decision theorists (Stalnaker, Gibbard and Harper,
Skyrms, Lewis, Sobel) as seriously as I neded to in order to appreciate that
my program of strict exclusion of causal talk would be an obstacle for me—
an obstacle that can be overcome by recognizing causality as a concept that
emerges naturally when we patch together the differently dated or clocked
probability assignments that arise in formulating and then solving a decision
problem. I now conclude that in Newcomb problems,“One box or two?” is
not a question about how to choose, but about what you are already set to
do, willy-nilly. Newcomb problems are not decision problems.
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