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Random Rasch matrices

Rasch model (1960):

Problem i attempted by person j. There are ‘easinesses’
α = (αi)i=1,... and ‘abilities’ β = (βj)j=1,... so that binary
responses Xij are conditionally independent given (α, β)
and

P (Xij = 1 |α, β) = 1− P (Xij = 0 |α, β) =
αiβj

1 + αiβj
.

A random Rasch matrix has (αi) i.i.d. with distribution A
and (βj) i.i.d. B.

Also potential model for hit of batter i against pitcher j,
occurrence of species i on island j, etc.
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Example of random Rasch matrix
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Exchangeable sequences

X1, . . . , Xn, . . . is exchangeable if for all n

X1, . . . , Xn
D= Xπ(1), . . . , Xπ(n) for all π ∈ S(n).

For example:

p(1, 1, 0, 0, 0, 1, 1, 0) = p(1, 0, 1, 0, 1, 0, 0, 1).

If X1, . . . , Xn, . . . are independent and identically
distributed, they are exchangeable, but not conversely.
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de Finetti’s Theorem

de Finetti (1931) shows that all exchangeable sequences are
mixtures of Bernoulli sequences:

A binary sequence X1, . . . , Xn, . . . is exchangeable if and
only if there exists a distribution function F on [0, 1] such
that for all n

p(x1, . . . , xn) =
∫ 1

0

θtn(1− θ)n−tn dF (θ),

where p(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn) and
tn =

∑n
i=1 xi.
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More about de Finetti’s Theorem

It further holds that F is the distribution function of the
limiting frequency:

Y = lim
n→∞

∑
i

Xi/n, P (Y ≤ y) = F (y)

and the Bernoulli distribution is obtained by conditioning
with Y = θ:

P (X1 = x1, . . . , Xn = xn |Y = θ) = θtn(1− θ)n−tn .
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Exchangeability and sufficiency

For binary variables, X1, . . . , Xn, . . . is exchangeable if and
only if for all n

P (X1 = x1, . . . , Xn = xn) = φn(
∑

i xi).

Because S(n) acts transitively on binary n-vectors with
fixed sum, i.e. if x and y are two such vectors, there is a
permutation which sends x into y.

So exchangeability is equivalent to tn =
∑

i xi being
sufficient and

p(x1, . . . , xn | tn) =
(
n

tn

)−1

.

7



Summarizing statistics

We say that t(x) is summarizing for p if p(x) = φ(t(x)) for
some φ.

Note that if t(x) is summarizing, it is sufficient and

p(x | t) is uniform on {x : t(x) = t}

So exchangeability is equivalent to tn =
∑

i xi summarizing
the probability.

Often t(x) takes values in an Abelian semigroup, generally
leading to mixture representation of all distributions
summarized by t in terms of the characters of the
semigroup, i.e. functions satisfying ρ(s+ t) = ρ(s)ρ(t).
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Row- and column-exchangeable matrices

A doubly infinite matrix X = {Xij}∞,∞
1,1 is said to be

• row–column exchangeable (RCE-matrix) if for all
m,n, π ∈ S(m), ρ ∈ S(n)

{Xij}m,n
1,1

D= {Xπ(i)ρ(j)}m,n
1,1 .

• weakly exchangeable (WE-matrix) if for all n and
π ∈ S(n)

{Xij}n,n
1,1

D= {Xπ(i)π(j)}n,n
1,1 .

9



Summarized matrices

A doubly infinite (binary) matrix X = {Xij}∞,∞
1,1 is said to

be row-column summarized (RCS-matrix) if for all m,n

p({xij}m,n
1,1 ) = φm,n{R1, . . . , Rm;C1, . . . , Cn},

where Ri =
∑

j xij and Cj =
∑

j xij are the row- and
column sums.

Note that, in contrast to the case of binary sequences,
RCE-matrices are generally not RCS-matrices and vice
versa.

If a matrix is both RCE and RCS, it is an RCES-matrix.
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RCE versus RCS

Group GRC of row and column permutations does not act
transitively on matrices with fixed row- and column sums:

M1 =


1 0 0
0 0 1
0 1 1

 , M2 =


0 1 0
0 0 1
1 0 1


M3 =


0 0 1
1 0 0
0 1 1

 , M4 =


0 0 1
0 1 0
1 0 1


M5 =


0 0 1
0 0 1
1 1 0


| det M1| = | det M2| = | det M3| = | det M4| = 1,| det M5| = 0.
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RCE versus RCE and RCS (RCES)
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RCE versus RCES
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Weakly summarized matrices

A doubly infinite (binary) matrix X = {Xij}∞,∞
1,1 is weakly

summarized (WS-matrix) if for all n

p({xij}n,n
1,1 ) = φn{R1 + C1, . . . , Rn + Cn},

where Ri =
∑

j xij and Cj =
∑

j xij are the row- and
column sums as before.

Also here WE-matrices are generally not WS-matrices and
vice versa.

If a matrix is both WE and WS, it is an WES-matrix.

If in addition, {Xij = Xji}, i.e. the matrix is symmetric we
may consider SWE, SWS, SWES matrices, etc.
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(S)WE versus (S)WS

M6 =



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0



M7 =



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


No joint permutation of rows and columns take M6 into
M7:
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M6 is adjacency matrix of two triangles and M7 adjacency
matrix of 6-cycle.
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Convexity formulation

The set of distributions PRCE is a convex simplex.

In particular, every P ∈ PRCE has a unique representation
as a mixture of extreme points ERCE , i.e.

P (A) =
∫
E
Q(A)µP (Q).

The same holds if RCE is replaced by RCS, RCES, WE,
SWE, SWES, etc. In addition, it can be shown that

ERCES = ERCE ∩ PRCS , EWES = EWE ∩ PWS ,

etc.
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Features of extreme measures

Aldous (1978,1981): for any P ∈ PRCE the following are
equivalent:

• P ∈ ERCE

• The tail σ-field T is trivial

• The corresponding RCE-matrix X is dissociated.

Here the tail T is T =
⋂∞

n=1 σ{Xij ,min(i, j) ≥ n} and a
matrix is dissociated if for all A1, A2, B1, B2 with
A1 ∩A2 = B1 ∩B2 = ∅

{Xij}i∈A1,j∈B1 ⊥⊥{Xij}i∈A2,j∈B2 .
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Random bipartite graphs

A binary matrix X defines a random graph in several ways.

If we consider the rows and colums as labels of two
different sets of vertices, a random bipartite graph can be
defined from X by letting Xij = 1 if and only if there is a
directed edge from i to j.

An RCE-matrix then corresponds to a random graph with
exhangeable labels within each partition of the graph
vertices.

An RCS-matrix is similarly one where any two graphs
having the same in-degree and out-degree for every vertex
are equally likely .
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Exchangeable random graphs

If we consider the row-and column numbers to label the
same vertex set, the matrix X represents in a similar way a
random graph.

The graph is in general directed, but if we further restrict
the matrix X to be symmetric, X can represent a random
undirected graph.

A WE-matrix now represents a random graph with
exchangeable labels, and an SWE-matrix similarly an
undirected random exchangeable graph.

An SWS-matrix represents a random graph with the
probability of any graph only depending on its vertex
degrees.
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de Finetti for RCE matrices

A binary doubly infinite random matrix X is a φ-matrix if
Xij are independent given U = (Ui)i=1,... and
V = (Vj)j=1,... where Ui and Vj are independent and
uniform on (0, 1) and

P (Xij = 1 |U = u, V = v) = φ(ui, vj),

Aldous (1981), Diaconis and Freedman (1981) show that
distributions of φ-matrices are the extreme points of PRCS ,
i.e. binary RCE matrices are mixtures of φ-matrices.

Many φ give same distribution of φ-matrix.
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RCE versus RCS

Consider φ-matrix defined by φ(ui, vj) = uivj . Then

P (M1) = P (M2) = P (M3) = P (M4) =
665

2985984

whereas P (M5) = 1/4096. (665× 4096 = 2723840)

RCE matrices have no simple summarizing statistics
whereas RCES-matrices are summarized by the empirical
distributions of row- and column sums:

tmn =
(∑m

i=1 δri ,
∑n

j=1 δsj

)
.

This is indeed a semigroup statistic, so RCES matrices can
be represented as mixtures of characters on the image
semigroup.
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Rasch type φ-matrices

If a φ-matrix is RCS it must satisfy

P

({
1 0
0 1

} ∣∣∣U, V )
= P

({
0 1
1 0

} ∣∣∣U, V )
.

This holds if φ is of Rasch type, i.e. if for all u, v, u∗, v∗:

φ(u, v)φ̄(u, v∗)φ̄(u∗, v)φ(u∗, v∗) =
φ̄(u, v)φ(u, v∗)φ(u∗, v)φ̄(u∗, v∗),

where we have let φ̄ = 1− φ. Above is Rasch functional
equation.

General solutions of this equation represent characters of
the image semigroup of the empirical row- and column sum
measures.
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de Finetti for RCES

Any RCES matrix is a mixture of Rasch type φ-matrices.

A random binary matrix is regular if

0 < P (Xij = 1 | S) < 1 for all i, j,

where the shell σ-algebra S is

S =
∞⋂

n=1

σ{Xij ,max(i, j) ≥ n}.

Any regular RCES matrix is a mixture of random Rasch
matrices.
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Solutions to Rasch functional equation

Regular solutions (0 < φ < 1) all of form

φ(u, v) =
a(u)b(v)

1 + a(u)b(v)

leading to random Rasch models.

Regular random Rasch matrices are parametrized by
distributions (A,B) of a(U) and b(V ), up to multiplication
of a and division of b with constant.

(A,B ) ∼ (A′, B′) ⇐⇒ A′(x) = A(cx), B′(y) = B(y/c)

for some c > 0.
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Non-regular solutions to Rasch equation

There are other interesting solutions, e.g.

φ(u, v) = χ{u≤v} =
{

1 if u ≤ v
0 otherwise.

or

φ(u, v) =


a(u)b(v)

1 + a(u)b(v)
if 1/3 < u, v < 2/3

χ{u≤v} otherwise

corresponding to incomparable groups.
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Non-regular Rasch with sorted rows and
columns

φ(u, v) = χ{u≤v}
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Non-regular RCE with sorted rows and
columns

φ(u, v) = χ{|u−v|≤1/2}
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RCE vs Rasch with sorted rows and columns

φ(u, v) = uv, φ(u, v) = uv/(1 + uv).
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Cantor–Rasch matrices

Rasch model prevails between comparable groups,
determinism between incomparable ones: Keep cutting out
middle thirds of the unit interval to get

φ(u, v) =



a(u)b(v)
1 + a(u)b(v)

if 1/9 < u, v < 2/9

a(u)b(v)
1 + a(u)b(v)

if 1/3 < u, v < 2/3

a(u)b(v)
1 + a(u)b(v)

if 7/9 < u, v < 8/9

χ{u≤v} otherwise

,

and so on.

General results of Ressel imply that the limit will
correspond to a φ-matrix.
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de Finetti for WE matrices

A binary doubly infinite random matrix X is a ψ-matrix if
X{i,j} are all independent given U = (Ui)i=1,... where Ui

are mutually independent and uniform on (0, 1) and

P ((X{i,j}) = (y, z) |U = u, V = v) = ψyz(ui, uj).

Here we have let X{i,j} = (Xij , Xji) for i < j.

Reformulating results in Aldous (1981) yield that binary
WE matrices are mixtures of ψ-matrices.

Note that we may further impose full symmetry by
restricting to ψyz = 0 unless y = z and distributional
symmetry by assuming ψyz = ψzy or, equivalently,
ψyz(u, v) = ψyz(v, u).
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Regular SWES matrices

Exactly as before, it is easy to show that
ESWES = ESWE ∩ PSWS , implying that SWES matrices
are mixtures of ψ-matrices where ψ satisfies the Rasch
functional equation.

Hence regular SWES ψ-matrices are generated as

ψ(u, v) =
a(u)a(v)

1 + a(u)a(v)
.

Probably no interesting non-regular solutions?
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Social network analysis

Random graphs with exchangeability properties form
natural models for social networks.

Frank and Strauss (1986) consider Markov graphs which
are random graphs with

X{i,j}⊥⊥X{k,l} |XE\{{i,j},{k,l}} (1)

whenever all indices i, j, k, l are different. Here E denotes
the edges in the complete graph on {1, . . . , n}.

They show that weakly exchangeable Markov graphs all
have the form

p({xij}n,n
1,1 ) ∝ exp{τnt(x) +

n−1∑
j=1

δnkνk(x)}
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where x = {xij}n,n
1,1 , t(x) is the number of triangles in x,

and νk(x) is the number of vertices in x of degree k.

Such Markov graphs are SWE , but generally not extendable
as such.

They are SWES if τ = 0, and not otherwise if n > 5.

Note that ψ-matrices typically differ from Markov graphs in
that they are dissociated , hence marginally rather than
conditionally independent:

X{i,j}⊥⊥X{k,l} (2)

whenever all indices i, j, k, l are different.

In fact infinite weakly exchangeable Markov graphs are
Bernoulli graphs, essentially because the conjunction of (1)
and (2) implies complete independence.
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Exchangeable random graphs

Problem: characterize exchangeable random graphs of the
form

p({xij}n,n
1,1 ) = fn(t(x),

n∑
k=1

δrk(x)})

or similar graphs with sufficient statistics being counts of
specific types of subgraph.

Rasch-type graphs, i.e. regular SWES-matrices, are as
above, but without triangles.
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Limiting behaviour of RCES matrices

Second half of de Finetti’s Theorem relates parameter to
limiting frequency behaviour. For RCES-matrices we have a
clear analogue:

Let (Fm, Gn) denote the pair of empirical distributions of
the row- and column- averages X̄i+ = Ri/n, X̄+j = Cj/m.

Consistency demands (Fm, Gn) to be a subconjugate pair ,
i.e. that Fm � G∗n where

F � G∗ ⇐⇒
∫ s

0

F (x) dx ≤
∫ s

0

G∗(x) dx for all s ∈ [0, 1],

where
G∗(x) = 1−G−1(1− x).
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Note that in fact F � G∗ =⇒ G � F ∗

Since (Fm, Gn) are both distributions on the unit interval,
it easily follows that any RCES-matrix has an a.s. limit:

lim
m,n→∞

(Fm, Gn) = (F,G).

For φ-matrices this limit is a degenerate random variable
and plays the role of θ in the standard deFinetti’s theorem.

Clearly, also (F,G) must then be subconjugate pairs.

Note that the pair (F,G) plays the role of θ in the standard
deFinetti theorem, being the limiting value of the sufficient
statistic.
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Marginal problem

If we consider models for batters vs. pitchers, F may
determine the distribution of the batting average of a
random batter U and G the average result of a random
pitcher V .

With the probability of a hit when this batter meets this
pitcher defined by Y = γ(U, V ), consistency implies that

E(Y |U) = U, E(Y |V ) = V.

Using results of Guttmann et al. (1991), it can be shown
(Lauritzen 2003) that such a function γ exists if and only if
(F,G) is a subconjugate pair.
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A conjecture concerning random Rasch
matrices

Conjecture: Let (F,G) be pair of cdfs on [0, 1]. Then
there is a Rasch φ-matrix with limits of marginal averages
having distributions F and G if and only if F � G∗.

Distributions of φ-matrices are injectively parametrized by
(F,G).

The φ-matrix is regular if and only if F ≺ G∗.

True if (F,G) are discrete with support on rational points!

A different formulation of the conjecture says that the
extreme points ERCES can be identified with the set of
subconjugate pairs (F,G).
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Summary

• RCES matrices are mixtures of φ-matrices of Rasch
type

• Regular RCES matrices are mixtures of random Rasch
matrices

• Non-regular RCES matrices can be natural and
interesting

• RCE, RCES, WE and SWE, matrices produce
possibly interesting random graphs.

• Rasch type φ-matrices are (probably) parametrized by
subconjugate pairs (F,G) of distributions of limiting
marginal averages. Regular by strictly subconjugate.
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