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1

Introduction

“It is curious how often the most acute and powerful intellects have gone
astray in the calculation of probabilities.”

William Stanley Jevons

1.1. the meaning of probability

The single term ‘probability’ can be used in several distinct senses. These
fall into two main groups. A probability can be a limiting ratio in a sequence
of repeatable events. Thus the statement that a coin has a 50% probability of
landing heads is usually taken to mean that approximately half of a series
of tosses will be heads, the ratio becoming ever more exact as the series is
extended. But a probability can also stand for something less tangible: a de-
gree of knowledge or belief. In this case, the probability can apply not just to
sequences, but also to single events. The weather forecaster who predicts rain
tomorrow with a probability of12 is not referring to a sequence of future days.
He is concerned more to make a reliable forecast for tomorrow than to spec-
ulate further ahead; besides, the forecast is based on particular atmospheric
conditions that will never be repeated. Instead, the forecaster is expressing
his confidence of rain, based on all the available information, as a value on
a scale on which 0 and 1 represent absolute certainty of no rain and rain
respectively.

The former is called the frequency interpretation of probability, the lat-
ter the epistemic or ‘degree of belief’ or Bayesian interpretation, after the
Reverend Thomas Bayes, an eighteenth-century writer on probability.1 A fre-
quency probability is a property of the world. It applies to chance events. A
Bayesian probability, in contrast, is a mental construct that represents uncer-
tainty. It applies not directly to events, but to our knowledge of them, and can

1 I shall use the terms “Bayesian” and “Bayesianism” when discussing the epistemic inter-
pretation, though they were not common until after World War II.
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thus be used in determinate situations. A Bayesian can speak of the probability
of a tossed coin, for example, even if he believes that with precise knowledge
of the physical conditions of the toss – the coin’s initial position and mass
distribution, the force and direction of the flick, the state of the surrounding
air – he could predict exactly how it would land.

The difference between the two interpretations is not merely semantic,
but reflects different attitudes to what constitutes relevant knowledge. A fre-
quentist would take the probability of throwing a head with a biased coin as
some valueP, whereP �= 1

2. This would express his expectation that more
heads than tails, or vice versa, would be found in a long sequence of results.
A Bayesian, however, would continue to regard the probability of a head
as 1

2, since unless he suspected the direction of the bias, he would have no
more reason to expect the next throw to be a head than a tail. The frequentist
would estimate a value forP from a number of trial tosses; the Bayesian
would revise his initial probability assessment with each successive result.
As the number of trial tosses is increased, the values of the two probabil-
ities will tend to converge. But the interpretations of these values remain
distinct.

1.2. the history of probability

The mathematical theory of probability can be traced back to the mid-
seventeenth century. Early probabilists such as Fermat and Pascal focused
on games of chance. Here the frequency interpretation is natural: the roll
of a die, or the selection of cards from a deck, is a well-defined and re-
peatable event for which exact sampling ratios can easily be calculated. Yet
these men were not just canny gamblers. They intended their theory of prob-
ability to account for hazard and uncertainty in everyday life too. This re-
quired an inversion of the usual methods. Games of chance involve direct
probabilities: from the constitution of a deck of cards, the odds of being
dealt a specified hand can be calculated precisely using combinatorial rules.
Needed for general situations, however, was the reverse process – working
backward from the observation of an event or sequence of events to their
generating probabilities, and hence the likely distribution of events in the
future.

This problem of ‘inverse probability’ was addressed by Bayes in a paper
published in 1764. His method could be applied to the common model in
which draws are made from an urn filled with unknown quantities of differ-
ently colored balls. It could be used to calculate the likely proportion of colors
in the urn, and hence the probability that the next selected ball will be of a
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given color, from the information of previous sampling. If the urn is known
to contain only black and white balls, for example, and assuming that all
possible fractions of black balls in the urn are initially equally likely, and that
balls drawn are replaced, then the observation ofp black andq white balls
from the first (p + q) draws yields the probability that the next ball drawn
will be black of (p + 1)/(p + q + 2). The urn models the process of learning
from observations. The calculus of inverse probability thus enabled unknown
causes to be inferred from known effects.

The method was championed from the late eighteenth century by Laplace
as a universal model of rationality. He applied this ‘doctrine of chances’
widely. In the courtroom, for example, the probability that the accused was
guilty could be calculated from the known jury majority, and hence used to
assess voting procedures. Probabilists such as Laplace, however, tended not
to notice that inverting the equations changed the meaning of probability.
The probability of picking a ball of a particular color was a function of the
relative proportions in the urn. The probability of guilt was different: it was
a quantified judgment in the light of a specified body of knowledge.

Inverse probability began to fall from favor around 1840. Its opponents
scoffed at the idea that degrees of rational belief could be measured, and
pointed out that since the method could be used only to update beliefs rather
than derive thema priori, it usually relied on probability evaluations that
were arbitrary, or at least unjustified. The mid-nineteenth century also saw
a rapid growth in attempts to quantify the human subject, as marked by an
eruption of published numerical data touching on all matters of life, particu-
larly crime rates and incidence of disease. The stable ratios observed in these
new statistics seemed a firmer base for probability than the vague and imper-
fect knowledge of the inverse method. Nevertheless, Bayesian methods were
often the only way to tackle a problem, and many philosophers and scientists
continued through Victorian times to maintain that inverse probability, if only
in qualitative form, modeled the process by which hypotheses were inferred
from experimental or observational evidence.

As a model of the scientific method, inverse probability reached its nadir
around 1930. Yet this eclipse was temporary. Following pioneering work by
L.J. Savage, Bruno de Finetti, Dennis Lindley, and I.J. Good in the 1950s,
Bayesianism is once again in vogue in statistical, economic, and especially
philosophical circles. From the late 1960s, experimental psychologists have
typically modeled the human mind as Bayesian, and legal scholars have seri-
ously proposed that jurors be schooled in Bayesian techniques. Bayesian con-
firmation theory is dominant in contemporary philosophy, and even though
most scientists continue to rely on the frequency interpretation for data
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analysis, the Bayesian calculus was recently used in the observation of the
top quark.2

1.3. scope of this book

This is a study of the two types of probability, and an investigation of how,
despite being adopted, at least implicitly, by many scientists and statisticians
in the eighteenth and nineteenth centuries, Bayesianism was discredited as a
theory of scientific inference during the 1920s and 1930s. I shall focus on two
British scientists, Sir Harold Jeffreys (1891–1989) and Sir Ronald Aylmer
Fisher (1890–1962). Fisher was a biological and agricultural statistician who
specialized in problems of inheritance. In addition to developing new statis-
tical methods, he is credited, with J.B.S. Haldane and Sewall Wright, with
synthesizing the biometric and Mendelian approaches into a theory of evo-
lution based on gene frequencies in populations. Jeffreys was a theoretical
geophysicist and astrophysicist who also made seminal contributions to the
fledgling fields of atmospheric physics and seismology. He worked largely
alone to construct sophisticated mathematical models of the Earth and the
solar system from the principles of classical mechanics. When tested against
the available evidence, such models could be used to investigate the origins
and internal structure of the Earth; in this way, Jeffreys inferred in 1926 that
the Earth’s core was liquid. Jeffreys knew that such conclusions were always
uncertain, and that new results could force their revision or abandonment,
and tried to account for this with a formal theory of scientific reasoning based
on Bayesian probability. Fisher, in contrast, was more concerned with the
reduction and evaluation of experimental data than an assessment of how
likely a theory was to be true. He regarded Bayesian methods as unfounded
in principle and misleading in practice, and worked to replace them with a
theory of statistical inference based on frequencies.

The two men developed their theories independently during the 1920s,
but clashed publicly in the early 1930s over the theory of errors. This was
not simply a mathematical matter. Though eighteenth-century probabilists
had been careful to attune the doctrine of chances to the intuitions of men of
quality, by the beginning of the twentieth century the probability calculus was
taken to define the rational attitude in matters of uncertainty. For both Fisher
and Jeffreys, therefore, a theory of probability carried a moral imperative. Not
only applicable to analysis, it constituted ‘correct’ scientific judgment and

2 Bhat, Prosper, and Snyder 1997.
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fixed the proper role of the scientist. Fisher believed that a scientist should
not step beyond the available data. Consequently, he regarded the Bayesian
method as inherently unscientific, because initial probability assignments
were arbitrary and hence sanctioned individual prejudice. Jeffreys, in contrast,
considered science to be simply a formal version of common sense. Though he
was concerned that the calculus reflect the general consensus among scientists,
he took it as obvious that the expertise and experience of the individual should
be a necessary component of a theory of science.

1.4. methods and argument

Science has traditionally been presented as a logical and progressive activity
in which theoretical models, initially abstracted from facts of observation,
are refined or revised with incoming experimental data in order to account
for a range of physical phenomena with increasing precision and general-
ity. In the last few decades, however, a number of historians have reacted
to this account. The ‘scientific method,’ they argue, is less a description of
usual practice than a fiction used by scientists to bolster confidence in their
theories. Science is not an impersonal or faceless activity, but the product
of individuals, often with strong political affinities or religious beliefs, and
usually eager to win recognition and further their careers.3 Such concerns
can influence research in a number of ways. Though some historical accounts
have depicted particular scientific theories as the product of little more than,
say, middle-class values or certain ideological commitments,4 the more per-
suasive seem to indicate that the effects of such ‘external’ factors are more
subtle. In addition to directing the focus of research, they can shape standards
of scientific conduct. Thus various scholars have argued that characteristic
approaches to science form around different communities, whetherthese be
marked by distinct experimental apparatus or analytical procedures,5 or the

3 An early advocate of this approach was the American sociologist Robert Merton, who
from the late 1930s studied the normative structure of science, and how it related both
to the wider society and to science as a profession. See the collection of essays, Merton
1983.

4 MacKenzie 1981 argues that British statisticians’ development of new techniques during
the nineteenth century was bound up with their middle-class values and commitment to
eugenics.

5 For example, Traweek 1988 relates the experimental practices and career strategies of
nuclear physicists to the apparatus of their groups; Buchwald 1994 points to the importance
of instrumentation on the interpretation of Hertz’s electromagnetic experiments.
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wider boundaries associated with disciplines and sub-disciplines,6 or national
groups or even genders.7 Sometimes, such approaches are borrowed whole-
sale from more familiar forms of life. Shapin and Schaffer have argued, for
example, that the culture of modern science dates to the seventeenth century,
and was appropriated from the norms of behavior of the English gentleman.8

Their study reveals much about how science became authoritative. The credi-
bility of particular results depended on the social status of the individuals who
vouched for them. The gentleman could not be doubted without giving him the
lie; contrariwise, artisans, or those in employ, could hardly be disinterested.
Contrasting with this ‘English’ style of persuasion is that associated with the
nineteenth-century German bureaucratic culture of ‘exact sensibility,’ which
tended to place trust in numerically precise experiments with quantitative
error estimations.9

Some sociologists have gone further, and argued that in influencing the
interpretation of scientific theories, and the criteria by which they are eval-
uated and tested, such social and cultural factors determine the content of
scientific knowledge too.10 Others have pointed to the holistic character of
research, noting that experiments are generally not simple exercises in fact-
gathering, but depend on a variety of factors – the equipment, the skills of the
experimenter, his theoretical and phenomenological understanding, and so
on – that in practice can be reconciled in a number of distinct but consistent
ways. Thus an experiment has no single successful outcome, and any par-
ticular result must be regarded as local and contingent, in part the choice of
the experimentalist, his expectations and presuppositions, and the intellectual
and experimental resources available.11

6 For example, Heilbron and Seidel 1989 describe the organizational structure that evolved
around particle physics; Bromberg 1991 and Forman 1992 relate the development of the
laser and maser, respectively, to the utilitarian needs of the sponsoring government and
military institutions.

7 For example, Pestre and Krige 1992 analyze how national work styles influenced the
growth of large-scale physics research; Hunt 1991b describes the influence of the ‘British’
tradition that the aether must be reducible to mechanical principles on those scientists
attempting to explicate Maxwell’s electromagnetic theory.

8 Shapin and Schaffer 1985, Shapin 1994.
9 See the essays in Wise 1995.

10 Bloor [1976] 1991 is a key text of the ‘sociology of scientific knowledge,’ a field much
influenced by Kuhn’s 1962 theory of scientific revolutions. For a survey of the field, see
Barnes, Bloor, and Henry 1996.

11 Hacking 1992 outlines this holistic theory of scientific research. For examples, see
Galison’s 1987 study of high-energy physics and Pickering’s 1989 study of the weak
neutral current.
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Such approaches have become notorious in recent years, and have been
attacked by scientists as undermining their claim that scientific knowledge
is reliable.12 To recognize that science is not ‘value free,’ however, is not to
regard its knowledge as false. Languages are wholly artificial yet still help to
explain and manipulate the world. Most historians and sociologists of science
are simply attempting to stimulate new directions in their fields rather than
questioning the authority or cognitive content of science.

This book is concerned not so much with experimental science as with
theoriesof experimental science. The process of theorizing, however, shares
with experimentation a creative and open-ended character. Not even a math-
ematical theory is a straightforward product of logic. Bare equations mean
nothing; they must be interpreted through models and analogies, and to be
used in science they require rules to govern how and to what they apply.13 As
Wittgenstein indicated, mathematics too is a form of life. My work examines
the case of probabilistic theories of scientific inference. The concept of prob-
ability has a degree of plasticity, and I will argue that its interpretation and
application depends in part on the particular context.

For Fisher and Jeffreys, a strong claim can be made about the relative influ-
ence of the various contextual factors. Although with diametrically opposed
views of the role of probability in science, they were otherwise very simi-
lar. Almost exact contemporaries, both came from respectable but straitened
middle class backgrounds to be educated in Cambridge around the same time.
They both had wide-ranging scientific interests, and both were early influ-
enced by the polymath Karl Pearson. Indeed, during the 1940s and 1950s,
they lived within a minute’s walk of each other in north Cambridge. The chief
difference stemmed from another similarity. Both were primarily practicing
scientists rather than professional statisticians or mathematicians, and each
developed his theory of probability in response to specific features of his re-
search discipline. It was these, I shall argue, that was the major influence for
each man in selecting his interpretation of probability.

Fisher worked on Mendelian genetics, one of the few wholly probabilistic
theories in natural science, and unique in involving a set of clearly-defined
outcomes, each of exact probability. A chance mechanism was central to

12 See, e.g., Sokal and Bricmont 1998.
13 For an example along these lines, see Pickering and Stephanides’s 1992 account of

‘quaternions’ – generalized complex numbers developed by William Hamilton for prob-
lems in applied mathematics; also see Warwick 1992, 1993, who has considered Einstein’s
relativity theory as a broad resource that could be selectively mobilized according to the
interests of various groups and individuals.
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Mendel’s theory, and the outcome of an experiment was to be explained not
in terms of uncertain causes or incomplete knowledge, but with reference to
the irreducible unpredictability of a definite if initially unknown probability.
Fisher considered the results of his breeding and agricultural experiments as
random samples from a distribution of fixed probability. This probability had
a clear, indeed almost palpable, interpretation as the limiting frequency or
ratio of, say, a biological trait appearing in a large ensemble of data.

For Jeffreys, such an interpretation was less natural. His research in geo-
physics did not fit the Mendelian model. From our knowledge of the Earth,
what is the probability that its core is molten? It made no sense to talk of an en-
semble of Earths. Instead, the probability represented imperfect knowledge.
After all, the core was either molten or not. Geophysics involved much infer-
ence from incomplete data, but few of the questions that interested Jeffreys
were explicable in terms of repeated sampling. Was it reasonable to believe
on the current evidence that the solar system formed by condensation, or
that there will be higher rainfall next year than this? Jeffreys decided that
all scientific questions were essentially of this uncertain character, and that a
theory of scientific inference should therefore be based on probability. Such a
probability was not a frequency, however, but clearly a degree of knowledge
relative to a given body of data.

Disciplinary concerns entered another way too. Like many of the founders
of modern statistical theory, Fisher was a keen proponent of eugenics. This
issue was obscured by charged and emotive rhetoric, and Fisher believed that
an objective and mathematically rigorous way of dealing with quantitative
data could remove individual bias and thus render the lessons of eugenics
compelling. Moreover, such a method, if suitably general, could also be used
to instill proper scientific standards in new academic disciplines, and pre-
scribe correct experimental procedure. Since he was fashioning statistics as
a normative procedure, and the statistician as a generalized scientific expert,
with duties not merely of analysis, but in the design of experiments to yield
unambiguous answers, Fisher regarded the subjectivity and ambiguity of
the Bayesian interpretation with abhorrence. For Jeffreys, on the other hand,
matters of public policy were not an issue, and thus strict objectivity not at
so great a premium. Fisher’s recipes for experimental design were not much
help either. One did not experiment on the Earth or the solar system, but relied
instead on observations from seismic stations or telescopes. Since this data
was often sparse or ambiguous, Fisher’s brute statistical recipes were useless.
Instead, to tease any genuine physical effects from the scatter and noise, the
scientist needed to use his personal expertise and previous experience. Fisher
would regard this as a subjective matter, but for Jeffreys it was necessary if any

8



inferences were to be drawn from the available evidence, and was precisely
the sort of information that could be encoded in the Bayesian model.

Each interpretation of probability, therefore, seemed suited to a particular
sort of inquiry. Even so, perhaps Jeffreys was simply wrong and Fisher right,
or vice versa? To meet this objection, I shall examine their dispute in detail.
Much of the argument was mathematical, seemingly unpromising territory
for the contextual historian. Yet as the ‘strong programme’ of the Edinburgh
school has established – arguably their most constructive product – the deep
assumptions and commitments of a research program, though usually tacit, are
often unveiled during periods of controversy.14 The exchange between Fisher
and Jeffreys was one of the few occasions in which a prominent frequentist
was forced to confront an intelligent and thoughtful opponent rather than a
straw man, and indicates that their versions of frequentism and Bayesianism
were incompatible but coherent. Neither scheme was perfect for scientific
inference, but each had certain advantages – according to Fisher and Jeffreys’s
different ideas of what counted as genuine and trustworthy science – when
compared with the other.

The debate between Fisher and Jeffreys ended inconclusively, each man
unyielding and confident in his own methods. Yet in the following decade,
inverse probability was almost entirely eclipsed as a valid mode of scientific
reasoning. I have argued that the clash between Fisher and Jeffreys was not a
consequence of error on one side. Why then was Jeffreys’s work unpersuasive?
Contemporary scientists tend to be unimpressed with fancy narratives of their
discipline; they believe that social or cultural factors intrude to pervert proper
scientific behavior rather than constitute it, and retrospectively gloss most
scientific disagreements as resulting from inadequate evidence.15 Yet this
reading is not compelling for the clash between the Bayesian and frequentist
schools. The mathematics on each side was not in question, any conceptual
difficulties with the Bayesian position had been recognized for decades, and
there were no new experimental results to resolve the dispute. Instead, it was a
particular alignment of the contextual resources used in the 1930s to interpret
and evaluate the Bayesian method that ultimately led to its rejection.

One of these was a broad reconception of the limits of knowledge. The
epistemic interpretation of probability flourishes in times of determinism. In a
mechanistic world there are no real probabilities; instead the concept reflects
incomplete knowledge. Thus in statistical physics probabilities provide an
approximate description of the motion of vast numbers of atoms in a volume

14 See, for example, Collins 1985.
15 See Sokal and Bricmont 1998; also Laudan 1990.
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of gas. But scientists changed their view of causation during the 1920s and
1930s. According to the ‘new physics’ – quantum mechanics – the world was
inherently stochastic; radioactive decay was random rather than due to some
hidden cause. Of course, an indeterministic theory of science does not force
a Bayesian interpretation – Jeffreys argued that the very existence of the new
physics meant that theories previously held as conclusive were defeasible, and
thus by extension that all scientific generalizations should only be asserted
with epistemic probability – but the rise of quantum mechanics accustomed
physicists to regard chance not as a consequence of imperfect human inquiry
but as a feature of nature, and to explain experimental results in terms of
probabilities that could be equated with observed frequencies.

Bayesianism suffered for more prosaic reasons too. Fisher’s numerical
and objective methods held for social scientists the promise of much-needed
rigor and credibility. Indeed, so eager were they to adopt his very particular
model of scientific experimentation that they reconfigured some fields, such
as psychology and to some extent clinical medicine, to conform with it. And
if social scientists were keen to buy objective methods, statisticians were keen
to sell. Their rejection of Bayesianism can be seen as part of a strategy of
professionalization: by presenting theirs as a general and objective method
of analysis, statisticians were justifying their discipline as distinct from any
particular field, and thus a candidate for separate university departments,
journals, and so on.

The precise combination and influence of such factors differed between
disciplines. Some statisticians regarded Fisher’s frequentism as no less con-
ceptually vulnerable than Jeffreys’s Bayesianism, and rejected both accounts
of inference in favor of the severe frequentism of the decision-theory approach
developed during the 1930s by Jerzy Neyman and Egon Pearson. Some sci-
entists also argued that a theory of probabilistic inference was not necessary
for science. The astronomer Sir Arthur Eddington, the most flamboyant pop-
ularizer of Einstein’s Theory of Relativity in Britain, asserted loudly that
particular general laws must be true on purelya priori considerations, and
cited Einstein’s theory as a case in point. Probability was to be relegated to
data analysis. In Germany, the philosopher-physicist Richard von Mises was
developing his own frequentist interpretation of probability, but also regarded
the concept as having only a restricted place in scientific inquiry. Most math-
ematicians, though still loosely frequentist, preferred from 1933 to follow the
Russian Andrei Kolmogorov with an axiomatic definition of probability based
on measure theory. Philosophers persisted with a broadly epistemic probabil-
ity, but turned for its exposition not to Jeffreys but to John Maynard Keynes’s
logical interpretation of 1921, or occasionally to that of the mathematician
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Frank Ramsey, who in 1926 had sketched the probability calculus as rules
for the consistent assignment of degrees of belief, in practice measured by
betting odds.

As the concept of probability fragmented, so Fisher and Jeffreys, having
battled from opposite sides of a seemingly sharp boundary, found themselves
jostled ever closer. In his later papers, Fisher adopted subjectivist language to
defend the pragmatic aspects of his own theory against the Neyman–Pearson
school. Jeffreys too saw Fisher’s approach as more level headed than the
alternative versions of non-scientists; soon after their exchange, Jeffreys wrote
that his and Fisher’s methods almost invariably led to the same conclusions,
and where they differed, both were doubtful. Indeed, the Bayesian revival of
the 1950s was based not so much on Jeffreys’s work as on a more extreme
version – personalism – developed, also during the 1930s, by the Italian Bruno
de Finetti. De Finetti rejected Jeffreys’s attempts to produce standard prior
probabilities and his definition of a probability as a degree of knowledge or
rational belief. A probability no longer related a hypothesis to a body of data,
as Jeffreys maintained, but represented subjective belief, and consequently
one set of prior probabilities was as good as any other.

1.5. synopsis and aims

The study starts in Chapter 2 with an account of the history of probability from
the mid-seventeenth to the end of the nineteenth centuries, stressing the rela-
tive positions of the epistemic and frequency interpretations. For most of the
eighteenth century they were in uneasy mixture, as the classical probabilists
applied a single calculus to games of chance, annuities, the combination of
observations, and rational action in the face of uncertainty. The distinction
was only clearly drawn around the beginning of the nineteenth century. By
1850, the success of astronomical error theory, and the rise of social statis-
tics – itself largely driven by bureaucrats to simplify taxation and adminis-
tration – made the frequency interpretation more natural. The mathematics
of the theory, however, remained intimately connected with particular imple-
mentations. Many new statistical techniques were developed by the biometric
school expressly to attack particular problems of heredity and evolution, for
example. (Ghosts of the biometricians’ work survive in the current statistical
terminology of regression and correlation.) Yet away from the reduction and
analysis of data, many scientists continued to regard inverse probability, and
the associated epistemic interpretation, as the model for uncertain inference.

Chapters 3 and 4 examine frequentist and Bayesian probability in more
detail. I concentrate on the versions due to Fisher and Jeffreys, and argue
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that in each case, the choice of interpretation and its subsequent develop-
ment evolved with a particular experience of scientific practice. Though the
treatment is roughly symmetric, these chapters are of unequal length. With
his major contributions both to statistics and the modern theory of evolution,
Fisher is already recognized as a major figure in the history of science, and
has generated a large secondary literature, including an excellent biography
by his daughter, Joan Fisher Box. Jeffreys is less well known, yet deserves
attention not only because of his contributions to geophysics and probability
theory, but because his work style – the solitary theorist introducing rigorous
mathematics to a range of fields previously associated with the vaguer meth-
ods of the enthusiast or dilettante – is now rare in a profession characterized
by rigid boundaries between sub-disciplines. Moreover, though the frequency
interpretation of probability and statistical model of experimental design is
familiar from standard courses in statistics, the epistemic interpretation, de-
spite the current revival of Bayesian probability theory, is still little known.
Thus in addition to making the historiographic points – that even mathemat-
ical theories have no unique meaning, but are ‘enculturated,’ and therefore
that a choice between them is not forced by content, but depends also on the
context – my work is intended to serve as an introduction both to Bayesian
probability theory and to the scientific career of Harold Jeffreys.

The backbone of the study, Chapter 5, concerns the Fisher–Jeffreys debate.
By directly comparing frequentist and Bayesian methods, my discussion is
intended to continue the explanations begun in previous chapters. It also
makes the point that the difference between the approaches of Fisher and
Jeffreys stemmed not from mere error or misunderstanding, but from distinct
views of the character and purpose of scientific inquiry.

In Chapter 6 I move from Fisher and Jeffreys to ask why the Bayesian
position was generally deserted in the years up to the World War II. The
discipline of statistics, like economics, effaces its history. Perhaps anxious
to encourage the appearance of objectivity, statistics textbooks – especially
primers for researchers in other fields – make little mention of controversies in
the development of the subject. Thus Bayesianism is usually suppressed, and
an inconsistent mixture of frequentist methods, taken from both the Fisherian
and Neyman–Pearson schools, is presented as a harmonious ‘statistics.’ This
section of the study is intended as a first step at correction. It outlines the
development of probabilistic thought during the 1930s across the disciplines
of statistics, the social sciences, the physical and biological sciences, mathe-
matics, and philosophy.

Chapter 6 is not, however, intended to be comprehensive. I do little to
distinguish the several variations on the frequentist theme that either emerged
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or were developed during the 1930s. These include the theories associated
with the names of Neyman and Pearson, von Mises, Reichenbach, Popper,
Kolmogorov, and Koopman. Each enjoyed a period of support in at least one
field, but apart from the Neyman–Pearson theory, none exerted much general
influence in the English-speaking scientific world. It is true that von Mises’s
approach had an impact, and that Kolmogorov’s formulation, in terms of mea-
sure theory, laid the foundation for a fully consistent theory of probability. But
the influence of both developments was largely limited to pure mathemati-
cians rather than practicing scientists. Neither von Mises nor Kolmogorov
was widely cited in statistics texts or debates of the Royal Statistical Society
during the period I consider. Fisher might have been expected to welcome
such frequentist contributions, yet rarely referred to their work in his papers,
even when discussing the theoretical and mathematical foundations of the
subject. He considered von Mises’s theory too restrictive to be of much use
in scientific research, and Kolmogorov’s too mathematical.16 Hence my dis-
cussions of von Mises and Kolmogorov in Chapter 6 are brief. For similar
reasons, I do not consider the subjective theory of de Finetti here at all. Though
he started work on probability in the late 1920s, and developed his theory in
a number of important papers through the 1930s, de Finetti was an isolated
figure until the 1950s even in Italy. Jeffreys saw none of his work, and had not
even heard of him until around 1983.17 The main aim of Chapter 6 is not to
distinguish these various sub-categories, but to chart the growing ascendancy
of frequentistism over Bayesianism during the 1930s.

The final Chapter 7 is in the form of a brief epilogue followed by conclu-
sions, and shows how the methodological position outlined in this introduction
might be applied to the post-war history of probability.

Appendix 1 is a short bibliographical essay of sources used in Chapter 2.
Appendix 2 presents the mathematical case for inverse probability as a model
of scientific inference. Appendix 3 lists the abbreviations used in the footnotes.

16 In a letter of 1946 Fisher ironically reported his discovery that some of his arguments
had apparently been justified by “a certain, I believe very learned, Russian named
Kolmogoroff”; he was still claiming to be unfamiliar with Kolmogorov’s axioms around
1950.

17 For more on von Mises, Kolmogorov, and de Finetti, see von Plato 1994.
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