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Why semigroups?

They enter the scene naturally, as can be seen already in De Finetti’s original
result:
Let P ∈M 1

+({0, 1}∞) be exchangeable; then

P (x1, . . . , xn) = ϕn

(
n∑
i=1

xi

)
= ϕ

(
n∑
i=1

xi, n

)
= ϕ

(
n∑
i=1

(xi, 1)

)
with ϕ defined on the set

S :=
{
(k, n) ∈ N2

0 | k ≤ n
}

which is (sub-) semigroup inside N2
0 .

Crucial point: ϕ is a socalled positive definite function on S (to be defined
below), therefore a (unique) mixture of socalled characters, taking here the form

(k, n)
σ7−→ pkqn−k, p, q ∈ R
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where in fact (easy to see) only the characters with p, q ≥ 0 and p+ q = 1 play
a rôle. Inserting this we get

P (x1, . . . , xn) = ϕ

(
n∑
i=1

(xi, 1)

)

=

∫
σ

(
n∑
i=1

(xi, 1)

)
dµ(σ)

=

∫ n∏
i=1

σ(xi, 1)dµ(σ)

=

∫ 1

0

n∏
i=1

pxi(1− p)1−xidµ(p)

for some (unique) µ ∈M 1
+([0, 1]), which is De Finetti’s result.
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Basic definitions and notations

S denotes an abelian semigroup, written additively, with neutral element 0 , and
possibly with an involution s 7−→ s− , which in many cases is just the identity.
σ : S −→ C is a character iff

σ(s + t) = σ(s) · σ(t), σ(s−) = σ(s), σ(0) = 1

α : S −→ R+ is an absolute value iff

α(s + t) ≤ α(s) · α(t), α(s−) = α(s), α(0) = 1

f : S −→ C is α–bounded iff

|f (s)| ≤ C · α(s) ∀ s ∈ S, for some C ≥ 0

f is exponentially bounded iff it is

α–bounded with repect to some absolute value α

ϕ : S −→ C is positive definite (abbrev.
”
p.d.“) iff

n∑
j,k=1

cjckϕ(sj + s−k ) ≥ 0 ∀ n ∈ N, cj ∈ C, sj ∈ S
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ϕ : S −→ C is completely p.d. (
”
c.p.d.“) iff s 7−→ ϕ(s + a) is p.d. ∀ a ∈ S

S∗ := set off all characters of S

P(S) := set of all p.d. functions on S

Sα := {σ ∈ S∗ | σ is α–bounded} = {σ ∈ S∗ | |σ| ≤ α}

Pα(S) := {ϕ ∈ P(S) | ϕ is α–bounded}

Ŝ := all bounded characters on S = {σ ∈ S∗ | |σ| ≤ 1}

Pb(S) := all bounded p.d. functions on S

It is easily seen that

S∗ ⊆ P1(S) := {ϕ ∈ P(S) | ϕ(0) = 1}

Sα ⊆ Pα
1 (S), ϕ ∈ Pα

1 (S) =⇒ |ϕ| ≤ α

Ŝ ⊆ Pb
1(S), ϕ ∈ Pb

1(S) =⇒ |ϕ| ≤ 1

and each σ ∈ S∗+ is even c.p.d.
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Theorem of Berg and Maserick

Pα
1 (S) is a Bauer-simplex with Sα as its set of extreme points.

Corollary. If ϕ ∈ Pα(S) is c.p.d. then the unique measure representing

ϕ is concentrated on Sα+ .

Let R and S be semigroups, t : R −→ S with t(r−) = (t(r))−, t(0) = 0, and
t(R) generating S .

Let β : R −→ C r {0} with β(r−) = β(r) and β(0) = 1 .

R(∞) := {(r1, r2, . . .) ∈ R∞ | ri = 0 finally} denotes the direct sum of countably
many copies of R .

Let ϕ : S −→ C be a given function.
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MAIN THEOREM

(i) If Φ(r1, r2, . . .) :=
∏

β(ri) · ϕ
(∑

t(ri)
)

is p.d. then so is ϕ .

(ii) If furthermore |Φ(r1, r2, . . .)| ≤ C ·
∏

γ(ri) for some function

γ : R −→ R+, γ(0) = 1, and some C > 0 , then

α(s) := inf

{∏ γ(ri)

|β(ri)|
|
∑

t(ri) = s

}
is an absolute value on S , ϕ is α–bounded, and the measure µ representing
ϕ is concentrated on

W := {σ ∈ Sα | β · (σ ◦ t) is p.d. on R}

(iii) Conversely, for µ ∈M+(W ) and ϕ(s) :=

∫
σ(s)dµ(σ) the function Φ as

defined in (i) is p.d. and fulfills (ii) for some C > 0 and some function γ .

(iv) A corresponding result holds for c.p.d. functions, the measure in (ii) being
then concentrated on W+ .
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One of the most direct corollaries is the following result, characterizing
spherically exchangeable sequences:

Schoenberg (1938)

P ∈M 1
+(R∞) is spherically symmetric

⇐⇒ P =

∫ ∞

0

N(0, c)∞dµ(c) ∃ µ ∈M 1
+(R+)

Proof.

Φ(r1, r2, . . .) := E
[
exp i

(∑
rjXj

)]
, (r1, r2, . . .) ∈ R(∞)

= ϕ
(∑

r2
j

)
, for some ϕ : R+ −→ C

(here β ≡ 1, γ ≡ 1, t(r) = r2

=⇒ ϕ bounded, p.d., ϕ(0) = 1 =⇒ ϕ(s) =

∫
e−λsdµ(s) ∃ µ ∈M 1

+([0,∞])

ϕ continuous =⇒ µ({∞}) = 0

=⇒ Φ(r1, r2, . . .) =

∫ ∞

0

e−λ
∑
r2jdµ(λ) =⇒ result. �
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With only slightly more effort we get the characterization of

Mixtures of the full 2–parameter normal family

X = (X1, X2, . . .) real–valued such that

Φ(r1, r2, . . .) := E
[
exp i

(∑
rjXj

)]
= ϕ

(∑
rj,
∑

r2
j

)
⇐⇒ PX =

∫
R×R+

N(a, c)∞dµ(a, c)

An example using Laplace- instead of Fourier-transforms is this:
let X1, X2, . . . ≥ 0 ; then

E
[
exp(−

∑
yjXj)

]
= ϕ

(∏
(1 + yj)

)
, for some ϕ : [1,∞[ −→ R

⇐⇒ PX =

∫ ∞

0

γ∞λ dµ(λ)

where γλ := 1
Γ(λ)x

λ−1e−x · λ+ , so γ1 = e1 (standard exponential).

8



And

PX =

∫ ∞

0

e∞λ dµ(λ) [ eλ exponential with parameter λ ]

⇐⇒ P (X1 ≥ a1, X2 ≥ a2, . . .) = ϕ
(∑

aj

)
, some ϕ : R+ −→ R

De Finetti’s theorem in extended form: Let X be finite or countable,
S a semigroup, t : X −→ S such that t(X ) generates S .
β : X −→ ]0,∞[ , ϕ : S −→ R+ . Then

P ∈M 1
+(X∞) fulfills

P (x1, . . . , xn) =

n∏
1

β(xi) · ϕ

(
n∑
1

t(xi)

)
∀ n, xi

⇐⇒ P =

∫
κ∞σ dµ(σ) ∃ µ ∈M 1

+(S∗+)

with µ concentrated on

W := {σ ∈ S∗+ | β · (σ ◦ t)︸ ︷︷ ︸
=:κσ

∈M 1
+(X )}
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EXAMPLES:

1. The original De Finetti result:

X = {0, 1}, S = {(k, n) ∈ N2
0 | k ≤ n},

t(x) := (x, 1), β ≡ 1

σ(k, n) = pkqn−k, p, q ≥ 0 is a general non–negative character,

σ ◦ t ∈M 1
+(X ) translates into

σ(t(0)) + σ(t(1)) = σ(0, 1) + σ(1, 1) = q + p = 1 .

2. X = {0, 1, 2, . . . , k}, k ∈ N . Let again P ∈M 1
+(X∞) fulfill

P (x1, . . . , xn) = ϕn

(
n∑
i=1

xi

)
= ϕ

(
n∑
i=1

(xi, 1)

)

as before. Then P =

∫ 1

0

κ∞p dµ(p) with

κp({j}) = pjqk−j, q = q(p) from pk + pk−1q + . . . + pqk−1 + qk = 1
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3. X = N0 and P as before. Then P =

∫ ∞

0

γ∞a dµ(a), γa geometric.

4. X = N0 . We consider P ∈M 1
+(X∞) with

P (x1, . . . , xn) =

n∏
i=1

1

xi!
· ϕ

(
n∑
i=1

(xi, 1)

)
=⇒ P =

∫ ∞

0

π∞λ dµ(λ), πλ Poisson

Here we have β(x) = 1/x! . The choice β(x) = 1/(x+ 1) leads to mixtures
of

κu({x}) :=
u

− log(1− u)
ux/(1 + x) (0 < u < 1) and κ0 = ε0 ,

and β(x) :=
(
x+r−1
r−1

)
leads to negative binomials.

A more abstract result is the

11



Hewitt-Savage theorem

X compact, then
P ∈M 1

+(X∞) exchangeable ⇐⇒ P =
∫
κ∞dµ(κ) ∃ µ ∈M 1

+(M 1
+(X ))

Proof. F := {f : X −→ [0, 1] | f is continuous} . Then, with δf := 1{f} ,

E
[∏

fj(Xj)
]

= ϕ
(∑

δfj

)
is c.p.d. and bounded, hence so is ϕ on N(F)

0 , the free abelian semigroup over
F

=⇒ ϕ
(∑

δfj

)
=

∫ ∏
τ (fj)dµ(τ ), µ ∈M 1

+

(
[0, 1]F

)
It is easy to see that µ is concentrated on

T := {τ : F −→ [0, 1] | τ (1) = 1, τ finitely additive}
and each τ ∈ T extends to a positive linear functional on C(X ), i.e. τ can
be identified with a Radon probability measure on X . Inserting this above gives
the wanted result. �
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Remark 1. If X is just a measurable space then with
F := {f : X −→ [0, 1] | f is measurable} one obtains

E
[∏

fj(Xj)
]

=

∫ ∏
τ (fj)dµ(τ ), µ ∈M 1

+(T )

with
T := {τ : F −→ [0, 1] | τ (1) = 1, τ additive}

which is a
”
weak“ form of a general De Finetti type result.

Remark 2. As noted above, the Berg/Maserick theorem is an essential ingre-
dient in the proof of the main theorem. It can however also be deduced from it:

If ϕ : S −→ C is p.d. and α–bounded then Φ(s1, s2, . . .) := ϕ (
∑
sj) is

p.d., and

| Φ(s1, s2, . . .) |≤ C ·
∏

α(sj) .

With R = S, t = idS and β ≡ 1 the set W in the main theorem reduces to
Sα .
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Remark 3. The main theorem can be looked at as a result on exchangeable
p.d. functions (here for simplicity we assume S without involution):
if Φ : R(∞) −→ R is p.d. and exchangeable, then

Φ(r1, r2, . . .) = ϕ
(∑

δrj

)
with ϕ : N(R)

0 −→ R (and δ0 := 0) . Then ϕ is p.d., and if |Φ(r1, r2, . . .) |≤
C ·
∏
γ(rj) , the function ϕ is α-bounded with α(δr) := γ(r) . So

ϕ
(∑

δrj

)
=

∫
σ
(∑

δrj

)
dµ(σ)

where µ is a Radon measure on

W := {τ : R −→ R | r 7−→ σ(δr) =: τ (r) p.d. on R and |τ | ≤ γ}

= {τ ∈ P1(R) | |τ | ≤ γ} ,
leading to

Φ(r1, r2, . . .) =

∫
W

∏
τ (rj)dµ(τ ) ,

a mixture of tensor powers of p.d. functions on R .
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Let’s take another look at the Main Theorem (with β ≡ 1) :

Φ(r1, r2, . . .) = ϕ
(∑

t(rj)
)

with the conclusion Φ p.d. =⇒ ϕ p.d.

Put U := R(∞), ψ(r1, r2, . . .) :=
∑
t(rj) , then ψ : U −→ S is onto and the

theorem says : ϕ ◦ ψ p.d. =⇒ ϕ p.d.

What is the crucial property of ψ enabling this conclusion?

∀ finite subsets {s1, . . . , sn} ⊆ S and {u1, . . . , um} ⊆ U and

∀ N ∈ N ∃ {ujpα | j ≤ n, p ≤ m,α ≤ N} ⊆ U such that

ψ(ujpα + u−kqβ) = sj + s−k + ψ(up + u−q ) for (j, p, α) 6= (k, q, β)

If this is fulfilled, and ψ(0) = 0 , we call ψ strongly almost additive.
This holds for example if ψ is a homomorphism and onto, but this case is not
too interesting.
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THEOREM. Let U, S be two semigroups, ψ : U −→ S be strongly
almost additive, and ϕ : S −→ C bounded. Then

ϕ ◦ ψ p.d. =⇒ ϕ p.d.

and ϕ is in fact a mixture of characters in

Ŝψ := {σ ∈ Ŝ | σ ◦ ψ p.d.}
(n.b.: a compact subsemigroup of Ŝ).

Furthermore:

{ϕ : S −→ C | ϕ bounded, ϕ(0) = 1, ϕ ◦ ψ p.d.}

is a Bauer simplex with Ŝψ as extreme points.
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Application to exchangeable random partitions

V = {v1, v2, . . .} is a partition of N :⇐⇒ vj 6= φ, vj ∩ vk = φ for j 6= k ,
and

⋃
j vj = N .

For example {{i} | i ∈ N} or {N} , the two
”
extreme“ partitions of N .

P := set of all partitions of N

V ∈ P can be identified with the equivalence relation E(V ) :=
⋃
v∈V v×v ⊆ N2

or with 1E(V ) ∈ {0, 1}N2
, this last identification defining the (natural) topology

on P , turning it into a compact metric space .

For A ⊆ N and V ∈ P we write

A v V :⇐⇒ ∃ v ∈ V with A ⊆ v

(that is: A is not separated by the classes of V ) .

For U, V ∈ P we define

U ≤ V :⇐⇒ u v V ∀ u ∈ U [⇐⇒ E(U) ⊆ E(V )]
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Every subset of P has a unique minimal element w.r. to
”
≤ “, and for a family

A of subsets of N there is a smallest W ∈ P such that A v W for each
A ∈ A . In the particular case of A = U ∪ V for U, V ∈ P we write U ∨ V
for this minimum, and call it (of course) their maximum.

The order intervals PU := {W ∈ P | U ≤ W} fulfill PU ∩ PV = PU∨V . For
U ∈ P the classes u ∈ U with |u| ≥ 2 are called non-trivial, their union 〈U〉
is called the support of U . Obviously 〈U ∨ V 〉 ⊆ 〈U〉 ∪ 〈V 〉 , so that

U := {U ∈ P | 〈U〉 is finite}
is a subsemigroup w.r. to

”
∨ “, with neutral element U0 = {{j} | j ∈ N} . The

order intervals PU for U ∈ U are clopen and generate the Borel sets of P .
Probability measures on P will be called random partitions.

THEOREM. ϕ : U −→ R is p.d. and normalized (i.e. ϕ(U0) = 1)
⇐⇒ ∃ (unique) random partition µ ∈M 1

+(P) with

ϕ(U) = µ(PU) ∀ U ∈ U .
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[easy direction
”
⇐=“:

n∑
j,k=1

cjckϕ(Uj ∨ Uk) =

∫  n∑
j=1

cj1PUj

2

dµ ≥ 0 .]

A permutation π of N induces π : P −→ P , π(V ) := {π(v) | v ∈ V } , and π
is continuous.

Definition. µ ∈M 1
+(P) is exchangeable: ⇐⇒ µπ = µ ∀ π .

Now µπ(PU) = µ(P
π−1(U)

) , so µ is exchangeable iff

µ(PU) = µ(PV )

∀ U, V ∈ U with |{u ∈ U | |u| = k}) = |{v ∈ V | |v| = k}| for k = 2, 3, . . .
iff µ(PU) = ϕ ◦ g(U) for some ϕ defined on

S := N({2,3,...})
0 ,

with g(U) :=
∑
u∈U
|u|≥2

δ|u| .
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This function g : U −→ S is in fact strongly almost additive; therefore the

THEOREM (Kingman)

M 1,e
+ (P) := {µ ∈ M 1

+(P)|µ exchangeable} is a Bauer simplex whose extreme
points are precisely those µ for which

µ(PU) = σ(g(U)), U ∈ U with σ ∈ Ŝ+ .

Such a character σ is given by a sequence (t2, t3, . . .) in [0, 1] .

We see that
tn = µ(P{{1,...,n},{n+1},{n+2},...}), n ≥ 2

is the µ–probability for {1, . . . , n} not getting separated. For general U ∈ U
the multiplicativity of σ is reflected in a certain pattern of independence:

µ(PU) =
∏
u∈U
|u|≥2

t|u| .
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Kingman showed that there exists x = (x1, x2, . . .) with xi ≥ 0,
∑

xi ≤ 1 ,

such that

tn =

∞∑
i=1

xni for n = 2, 3, . . . .

There is in fact a natural way to get this distribution µ :

put x0 := 1 −
∞∑
i=1

xi and let X1, X2, . . . be iid with P (X1 = i) = xi, i ≥ 0 .

Then

G := {{j ∈ N | Xj = c} | c ∈ N} ∪ {{i} | Xi = 0}r {∅}

is P–valued with distribution µ .
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APPROXIMATION LEMMA FOR P.D. MATRICES

An =



n︷ ︸︸ ︷ ��
��
a11

∗∗∗
∗∗

��
��
a11


n︷ ︸︸ ︷ ��

��
a12

 . . .

n︷ ︸︸ ︷ ��
��
a1p


 ��

��
a21


 ��

��
a22

∗∗∗
∗∗

��
��
a22

 . . .

 ��
��
a2p


.
.
.

.

.

.
.

.
.

.

.

. ��
��
ap1


 ��

��
ap2

 . . .

 ��
��
app

∗∗∗
∗∗

��
��
app





A = (ajk) ∈ Cp×p

is given,
∀ n ∈ N
∃ An ∈ Cpn×pn as
indicated

If An is p.d. ∀ n
and

sup
n

[
max
j≤pn

An(j, j)

]
<∞

then A is p.d..
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