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The name of Bruno de Finetti is indissolubly linked with the subjectivistic con-
ception of probability.

However, de Finetti achieved fame also for crucial contributions both to other
branches of probability and to important fields of mathematics, to say nothing of
the philosophic debate at large.



Limiting myself to the field of probability, I would like to focus on his ground-
breaking research on random functions and, in particular, on random functions
with stationary and independent increments, in connection with the birth of the
subjectivistic conception of probability.

Hence, a more appropriate title of this talk could be

The dawn of the theory of random functions and of the subjectivistic

approach to probability.
A tangled story of results and thought about probability.



Contents

1. de Finetti’s method of ′′derived law′′ and characterization of the instanta-
neous law of a process with stationary and independent increments. (The
birth of the concept of infinitely divisible law.)

2. Moments of the instantaneous law and nowhere differentiability of paths of
a Brownian motion.

3. Comparison with previous work (Bachelier, Wiener, . . . ).

4. Representation of infinitely divisible laws (′′un problema di Bruno de Finetti′′):
de Finetti, Kolmogorov, Lévy, Khintchine.



5. Further contributions (continuity of trajectories and continuity of the instan-
taneous law, integration of random functions, . . . ).

6. Birth and consolidation of the subjectivistic conception: weak versus strong
version of the principle of total probabilities (additivity); ensuing criticism of
the methods used to study random functions.



. . . The essential novelty in the scientific method would then be the substitution
of the logic by probability theory; instead of rationalistic science, where certain-
ty is deduced from certainty, there would be a probabilistic science, where the
probable is deduced from the probable. It is not prejudicially necessary to re-
nounce determinism for setting up science on these bases; we may confess not
to be able to foresee an event without saying that forecasting is itself impossible
. . .

(de Finetti: Le leggi differenziabili e la rinunzia al determinismo, 1930)

Rigid laws which state that a certain fact is bound to occur in a certain way are
being replaced by statistical laws stating that a certain fact can occur depending
on a variety of ways governed by probability laws.

(see, also, Kolmogorov: ′′Über die analytischen Methoden
in der Wahrscheinlinchkeitsrechnung′′, 1931)



′′Le Leggi differenziali . . . ′′ reproduces a talk given at Seminario matematico
della Facoltà di Scienze dell’Università di Roma on 5th April 1930 about

Random Functions

after the publication of 3 ′′Note lincee′′

• Sulle funzioni a incremento aleatorio (1929)

• Sulla possibilità di valori eccezionali per una legge di incrementi aleatori
(1929)

• Integrazione delle funzioni a incremento aleatorio (1929)



In ′′Sulle funzioni a incremento aleatorio ′′ (1929) de Finetti starts out from a
probabilistic version of Volterra’s classification of ordinary laws of physics
(blue for classical, red for probabilistic):

(a) X ′t = f(t)

L(Xt −Xt0|Xu, 0 ≤ u ≤ t0) = L(Xt −Xt0) (known law)

(b) X ′t = f(t, Xt)

L(Xt −Xt0|Xu, 0 ≤ u ≤ t0) = L(Xt −Xt0|Xt0) (differential law)

(c) X ′t = f(t;Xu, 0 ≤ u ≤ t)

L(Xt −Xt0|Xu, 0 ≤ u ≤ t0) (integral law)

The result is a classification for stochastic processes.



′′Funzioni a incremento aleatorio con legge nota′′ stands for ′′random functions
with random increments having a known law′′, i.e.

Stochastic processes with independent increments

(Case (a) of the previous classification).

de Finetti limits himself to considering this case.



0 ≤ t0 < t1 Xt1 −Xt0

Ft0,t1 ←→ ψt0,t1

ψ0,t+∆ = ψ0,t · ψt,t+∆

1

∆

(

Logψ0,t+∆ − Logψ0,t

)

=
1

∆
Logψt,t+∆

∂

∂t
Logψ0,t = lim

∆→0

1

∆
Logψt,t+∆ =: Log(ψ∗t )

ψ∗t is what de Finetti suggested should be called (characteristic function of the)
derived law



He defined a ′′known′′ law for the increment to be fixed when it is independent
of t:

ψ∗t = ψ∗1 for every t > 0.

(Process with independent and stationary increments). Then

tLogψ∗1 =

∫ t

0

∂

∂s
Logψsds = Logψt

ψ∗1(ξ) = (ψt(ξ))
1/t (and ψ∗1 = ψ1)

Then, (de Finetti, 1929), the instantaneous law of a process with stationary and
independent increments must be infinitely divisible (term introduced by Khint-
chine in 1937).



So, if X1 has finite second moment, i.e.

Logψ1(ξ) = im1ξ −
ξ2

2
σ2
1 + o(ξ2) (ξ → 0),

from ψt = ψt1 one gets

mt := E(Xt) = tm1, σ2
t := V ar(Xt) = tσ2

1.

De Finetti stresses the importance of the case in which

Logψ1(ξ) = im1ξ −
ξ2

2
σ2
1

i.e. the case of increments with known and fixed Gaussian law.



De Finetti concludes ′′Funzioni a incremento aleatorio′′ (1929) with the funda-
mental statement

Almost every path of a random function with known and fixed Gaussian law has
nowhere finite lower and upper derivatives

All literature refers to this statement as a Paley, Wiener and Zygmund (*) theo-
rem, ignoring de Finetti’s authorship.

(*) Mathematische Zeitschrift (1933)



Everything seems to point to the fact that de Finetti was actually unaware of
fundamental contributions to random functions such as:

Bachelier’s Théorie de la spéculation (1900)

Wiener’s Differential–space (1923)

Daniell’s Integral product and probability (1921)



Bachelier had discovered a few distinguished properties of the standard Brown-
ian motion process like

Prob{ sup
0≤t≤T

Xt ≥ λ} = 2Prob{XT ≥ λ}.



The Wiener (1923) concept of differential-space brings Wiener’s and de Finetti’s
stances pretty close to each other.

In fact, Wiener took his cue from the physical theory of the Brownian movement,
which led him to state that is the displacement of a particle over an interval that
is independent of the particle over another interval. (The same as de Finetti’s
concept of ′′known′′ law. )



′′That is, instead of f(1/n), . . . , f(k/n), . . . , f(1) representing ’dimensions’ of
f(t), the n quantities

x1 = f(1/n)− f(0)

x2 = f(2/n)− f(1/n)

. . . . . .

xn = f(1)− f((n− 1)/n)

are of equal weight, vary independently, and in some degree represent dimensions.′′

Firstly, Wiener tries to justify the assumption that the prob. distr. of f(t1)−f(t0)
is Gaussian (0, A(t1 − t0)), for any t0, t1, 0 ≤ t0 < t1 ≤ 1.

His goal was to define mean values for certain functionals on the set of all real–
valued functions defined on [0,1].



To obtain a Daniell integral that gives these functionals, he started out from func-
tionals that depend only on the path’s values at a finite number of time points.
He found their mean value using the above Gaussian distributions.

By the Daniell extension method, he was able to define mean values for a wide
class of functionals. In particular he obtained mean values for indicators of
events such as

{f ∈ C[0,1]} {f ∈ BV [0,1]}

and he established that

Prob{f ∈ C[0,1]} = 1 Prob{f ∈ BV [0,1]} = 0.

(de Finetti often assumes continuity of trajectories, but he never deals with the
problem of deducing that property from ′′distributional′′ information.)



The second paper, in order of importance, de Finetti wrote about processes with
stationary and independent increments is

′′Le funzioni caratteristiche di legge istantanea′′ (1930)

where he resolves on characterizing ψ1 (the ′′derived law′′). Clearly,

Logψ1 = lim
n→+∞

n{e
1
nLogψ1 − 1} = lim

n→+∞
n{e

Logψ1/n − 1}

or, more in general,

Logψ1 = lim
∆→0

1

∆
{eLogψ∆ − 1}

ψ1 = lim
∆→0

exp{
1

∆
(ψ∆ − 1)}.



Now,

1

∆
(ψ∆(ξ)− 1) =

∫

R

1

∆
(eiξx − 1)dF∆(x) =

∫

R

(eiξx − 1)µ∆(dx)

where

µ∆(A) = expected number of increments, on intervals of length ∆, belonging to A.

One can set up approximating sums of the integral such that
∫

R

(eiξx − 1)µ∆(dx) =
∑

j

λ
(∆)
j (e

iξx
(∆)
j − 1)



and, thus,

ψ1(ξ) = lim
∆→0

e
∑

j λ
(∆)
j (e

iξx
(∆)
j −1)

= lim
∆→0

∏

j

e
λ
(∆)
j (e

iξx
(∆)
j −1)

that is

The derived law (any infinitely divisible law) coincides with the limit of a finite
convolution of Poisson type.



Kolmogorov (*) starts out from de Finetti’s derived law,
∫

R

1

∆
(eiξx − 1)dF∆(x),

under the assumption that
∫

R

x2dF∆(x) < +∞ (∀∆ > 0).

(*) Sulla forma generale di un processo stocastico omogeneo. (Un problema di
Bruno de Finetti), Rend. Lincei, 1932.



He writes

1

∆
(ψ∆(ξ)− 1) = iξm+

1

∆

∫

R

(eiξx − 1− iξx)dF∆(x)

= iξm+

∫

R

p(x, ξ)dG∆(x)

with

G∆(x) =
1

∆

∫ x

−∞
u2dF∆(u)

and

p(x, ξ) =







eiξx−1−iξx
x2

x 6= 0

−ξ2

2 x = 0.



Then, Kolmogorov proves that
∫

R p(x, ξ)dG∆n(x) converges to
∫

R p(x, ξ)dG(x)

along some subsequence (∆n)n≥1, to obtain

ψ1(ξ) =

∫

R

p(x, ξ)dG(x)

with

p(x, ξ) =







eiξx−1−iξx
x2

x 6= 0

−ξ2

2 x = 0.



In 1937, Khintchine (*) used the de Finetti-Kolmogorov method to derive the Lévy
general representation of the characterisic function of an infinitely divisible law.

(*) A new derivation of a formula by P.Lévy, Bulletin of the Moscow State Univer-
sity.

From

Logψ1(ξ) = lim
∆→0

∫

R

1

∆
(eiξx − 1)dF∆(x),

setting

K∆(x) =

∫ x

0

u2

1 + u2

1

∆
dF∆(u),



he obtains

Logψ1(ξ) = lim
∆→0

∫

R

(eiξx − 1)
1 + x2

x2
dK∆(x)

= lim
∆→0

[iξγ∆ +

∫

R

(eiξx − 1−
iξx

1 + x2
)
1 + x2

x2
dK∆(x)]

(with

γ∆ =
∫

R

1

x
dK∆(x))

and concludes that

Logψ1(ξ) = iξγ +
∫

R

(eiξx − 1−
iξx

1 + x2
)
1 + x2

x2
dK(x).



Lévy played a fundamental role in the story of processes with independent incre-
ments, not only because he was the first to deduce a representation for general
infinitely divisible distributions in a paper of 1934 (in Annali della Scuola Nor-
male Superiore di Pisa), but also because he started out with an in–depth anal-
ysis of the properties of the paths of a process with stationary and independent
increments.

In point of fact, he derived the above general representation from that analysis.

In other words, his approach is quite different from de Finetti’s and Kolmogorov’s
approach. Lévy recalls that he became aware of de Finetti’s and Kolmogorov’s
papers after writing and submitting his own paper.



De Finetti’s remaining papers about the subject of processes with stationary and
independent increments contain:

• A proof of the fact that the law of Xt must be continuous when the trajecto-
ries of t 7→ Xt are continuous. (Sulle possibilità di valori eccezionali... 1929;
Le funzioni caratteristiche di legge istantanea dotate di valori eccezionali,
1931)

• A discussion of the law of
∫ t
0Xudu when Xt has continuous trajectories

(Integrazione delle funzioni a incremento aleatorio, 1929).



Although they are not of the same level as those described in the first part of this
talk, they are anyway of a certain importance when it comes to understanding
the influence exerted by the ultimate presentation of the mathematical theory
of subjectivistic probability on de Finetti’s critical look at his work in the field of
random functions and on its rapid abandonment.

Recall that his subjectivistic stance, based on the coherence principle, does
not prescribe σ–additivity. Hence, probabilistic statements, to be general, must
involve simply additive probability distributions.



So, as to the problem of integration of t 7→ Xt, one has

It :=
∫ t

0
Xudu = lim

n→+∞

t

n

n
∑

h=1

Xth/n.

Then, setting

Sn =
t

n

n
∑

h=1

Xth/n = tX0 +
t

n

n
∑

h=1

(n− h+ 1){Xth/n −Xt(h−1)/n}

one obtains

LogφSn(ξ)→ icξt+
1

ξ

∫ tξ

0
Logψ1(u)du =: Logφ̃(ξ)

whenever X0 = c.



However, giving up complete additivity, one cannot conclude that φ̃ is the char-
acteristic function of integral It.

Patrizia Berti and Pietro Rigo have shown that information about the projective
system of Xt has no influence in determining the law of It.

(An analogous problem appears with respect to the classical law of large num-
bers for sequences of events. (Sui passaggi al limite..., 1930).)



Moreover, in a finitely additive setting, nowhere differentiability of paths of a
Brownian motion represents a particular case of the following general propo-
sition:

For any pair of strictly positive numbers ε and M , the event that there is some
subinterval of [0,1], with length > ε, in which the Lipshitz condition

|Xt2 −Xt1| ≤M |t2 − t1|

holds true has probability 0.



To appreciate de Finetti’s stance on the role played by complete additivity, with
respect to conditions which are necessary for coherence of probability assess-
ments, it would be enough to read and ponder over the four short Notes contain-
ing the debate with Maurice Fréchet on the value of the postulate of σ–additivity,
published in Rendiconti Ist. Lombardo (1930).



Nowadays, treatment of probabilistic problems in the framework of non σ–additive
probabilities is definitely unusual. Studies of this kind are viewed, in most cases,
as mere oddities.

According to de Finetti, though, the matter was of paramount importance. He
tried to enlighten the probabilistic community as to the ′′relativism′′ of statements
which, before the appearance of de Finetti’s criticism, might have been viewed
as descriptions of objective and general truths.



The abandonment of σ–additivity, on the contrary, points out that the value
of these ′′truths′′ could depend on conventional unjustified way of conceiving
probability.

As we have seen, de Finetti was, in a sense, a pioneer since he thought it fit
to reconsider some of the tenets of his own research, thus blazing exciting new
trails. In spite of the difficulties coming large on the horizon he stayed the course
as it were, although that spelled isolation within the scientific community. But it is
just beacuse of this moral courage of his that he stands out from the rest of the
pack.



A remark from ′′Le leggi differenziali e la rinunzia...′′ on observability

<< The functionXt has a random behaviour. Hence the hypothesis that it satis-
fies or does not satisy a given condition may result either true or false. Therefore
this hypothesis represents an event which might have a certain probability. But
in order that, from an empirical point of view, the probability evaluation of an
event does not appear to us as meaningless we have to acknowledge at least
the theoretical possibility of experimentally verifying when it is true or false; this
consideration leads to establish amongst the various conceivable properties of a
function Xt a fairly strong distinction >>



According to it, only conditions depending on a finite number of values of Xt (=
empirical conditions) are susceptible of ′′concrete′′ probability evaluations.

Semiempirical or transcendental conditions can be considered, provided that
they are studied in relation to extra conditions that are extraneous to the essential
aspects of a given problem.



In ′′Funzioni aleatorie′′ (1937), de Finetti assumes a critical attitude toward his
previous papers (where he considers the probability of transcendental condi-
tions) and, in particular, toward the method of the ′′derived′′ law.

To ′′probabilize′′ conditions of an empirical nature it is enough to assess projec-
tive systems of finite dimensional distributions.

This is the same view inspiring the Kolmogorov construction of probability laws
in infinite–dimensional spaces.



0 = t0 < t1 < · · · < tn t→ G(t)

uk := G(tk + 0)−G(tk − 0) k = 0, . . . , n

G(t) = 0 t < t1

G(t) =
∑

uk t > tn



φ(G) : = E(e−i
∑n
k=1 ukXtk)

= E(e−i
∑n
k=1G(tk)∆Xk)

(∆k := X(tk)−X(tk−1))

Logφ(G) =
∑

k

∫ tk

tk−1

Logψ∗t (G(tk))dt

=

∫ +∞

0
Logψ∗t (G(t))dt.


