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ON NONCOMMUTATIVE DISTRIBUTIONAL SYMMETRIES AND DE

FINETTI TYPE THEOREMS ASSOCIATED WITH THEM

WEIHUA LIU

Abstract. We prove general de Finetti theorems for classical, free and boolean inde-
pendence. Our general de Finetti theorems work for non-easy quantum groups, which
generalizes a recent work of Banica, Curran and Speicher. For infinite sequences, we will
determine maximal distributional symmetries which means the corresponding de Finetti
theorem fails if the sequence satisfies more symmetries other than the maximal one. In
addition, we define boolean quantum semigroups in analogue of easy quantum groups by
universal conditions on matrix coordinate generators and show some boolean analogue
of de Finetti theorems.

1. Introduction

The area of distributional symmetries is one of the richest of modern probability theory.
The most obvious problem in this area is to characterize the class of objects of a given type
with a specified symmetry property. For example, de Finetti’s fundamental theorem states that
an infinite sequence of random variables, whose joint distribution is invariant under all finite
permutations, is conditionally independent and identically distributed. Later, in [6], rotatability
and other continuous symmetries were considered by Freedman. One can see [8] for more details.

Exchangeability and rotatability are classical symmetries associate with permutation groups
and orthogonal groups. The quantum analogue of permutation and orthogonal groups were
given by Wang in [21, 22]. They are compact quantum groups in the sense of Woronowicz’ matrix
pseudogroups [24, 25]. In [9], by using symmetries associated with quantum permutation groups,
Köstler and Speicher discovered a free analogue of classical de Finetti theorem: an infinite
sequence of noncommutative random variables are invariant under quantum permutations is
equivalent to the fact that the random variables are identically distributed and free with respect
to the conditional expectation onto their tail algebra. A free analogue of Freedman’s work on
rotatability was given by Curran in [4].

In [3], both classical symmetries and quantum symmetries are studied in the “easiness”formalism.
Roughly speaking, those structures are quantum groups associated tensor categories of parti-
tions. For each n, it was shown that there are six easy groups which are denoted by Sn, On,
Bn, Hn, B′

n, S′
n. We will denote the algebras of continuous functions on these groups by Cs(n),

Co(n), Cb(n), Ch(n), Cb′(n), Cs′(n), respectively. In the quantum aspect, for each n, together
with the work of Weber [23], there are seven easy quantum groups which are denoted by As(n),
Ao(n), Ab(n), Ah(n), As′(n), Ab′(n), Ab#(n). All these algebras are generated by n2 matrix
coordinates ui,j’s which satisfy certain relation R. The relations R for C∗(n) and A∗(n) are
suitable such that all these algebras are Hopf algebras in the sense of Woronowicz[24]. The
distributional symmetries associated with Woronowicz’s are defined via coactions of quantum
groups on noncommutative polynomials in the sense of So ltan [14]. Among these symmetries, in
[2], Banica, Curran and Speicher studied de Finetti theorems for Cs(n), Co(n), Cb(n), Ch(n) and
As(n), Ao(n), Ab(n), Ah(n). In short, these symmetries can characterize independence relations
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which are classical or free, and can characterize some special distributions which are symmetric,
shifted central limit and centered central limit laws. One goal of this paper is to study de Finetti
theorems for all compact quantum groups, for classical and free independence, which are either
between Cs(n) and Co(n) or between As(n) and Ao(n).

In [13], Ryll-Nardzewski showed that de Finetti theorem holds under the weaker condition
of spreadability. Therefore, for infinite sequences of random variables, different symmetries
may characterize a same property. Another goal of this paper is to determine that under what
conditions the symmetries characterize a same property for infinite sequences. In our compact
quantum group framework, we will show that there is no characterization other than what Cs(n),
Co(n), Cb(n), Ch(n) and As(n), Ao(n), Ab(n), Ah(n) can characterize. On the other hand, we
will show that these symmetries are maximal which means the corresponding de Finetti theorem
fails if the sequence satisfies more symmetries other than a maximal one.

In [17, 18], it was shown that there is a unique non-unital independence, which is called
boolean independence, in noncommutative probability. The study of distributional symmetries
for boolean independence was started in [11]. We constructed a family of quantum semigroups in
analogue of Wang’s quantum permutation groups and defined their coactions on joint distribu-
tions of sequences. It was shown that the distributional symmetries associated those coactions
can be used to characterize boolean independence in a proper framework. In a recent work of
Hayase[7], by following the idea of Banica and Speicher, many distributional symmetries related
to boolean independence were constructed via the category of interval partitions. By using those
distributional symmetries, Haysase find de Finetti theorems for a boolean analogue of easy quan-
tum groups. In this paper, we will defined quantum semigroups, which are related to boolean
independence in analogue of easy quantum groups via some universal conditions, Bs(n), Bo(n),
Bb(n), Bh(n), Bs′(n), Bb′(n). Our quantum semigroups are quotient algebras of Hayase’s. We
do not have maximal distributional symmetries for boolean independence, but we provide a way
to check de Finetti theorems for some quantum semigroups other than these universal ones.

Our main result is the following de Finetti theorem:

Theorem 1.1. Let (A, φ) be a W ∗-probability space and (xi)i∈N be a sequence of random
variables which generate A

• Classical case:
Suppose that A is commutative. Let {E(n)}n∈N be a sequence of orthogonal Hopf
algebras such that Cs(n) ⊆ E(n) ⊆ Co(n) for each n ∈ N. If the joint distribution of
(xi)i∈N is E(n) invariant, then there are a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving
conditional expectation E : A → B such that

1. If E(n) = Cs(n) for all n, then (xi)i∈N are conditionally independent and identically
distributed with respect to E.

2. If Cs(n) ⊆ E(n) ⊆ Ch(n) for all n and there exists a k such that E(k) 6= Cs(k), then
(xi)i∈N are conditionally independent and have identically symmetric distribution
with respect to E.

3. If Cs(n) ⊆ E(n) ⊆ Cb(n) for all n and there exists a k such that E(k) 6= Cs(k),
then (xi)i∈N are conditionally independent and have identically shifted-Gaussian
distribution with respect to E.

4. If there exist k1, k2 such that E(k1) 6⊆ Ch(k1) and E(k2) 6⊆ Cb(k2), then (xi)i∈N are
conditionally independent and have centered Gaussian distribution with respect to
E.

• Free case:
Suppose φ is faithful. Let {E(n)}n∈N be a sequence of orthogonal Hopf algebras such
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that As(n) ⊆ E(n) ⊆ Ao(n) for each n. If the joint distribution of (xi)i∈N is E(n)
invariant, then there are a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving conditional
expectation E : A → B such that

1. If E(n) = As(n) for all n, then (xi)i∈N are freely independent and identically
distributed with respect to E.

2. If As(n) ⊆ E(n) ⊆ Ah(n) for all n and there exists a k such that E(k) 6= As(k),
then (xi)i∈N are freely independent and have identically symmetric distribution
with respect to E.

3. If As(n) ⊆ E(n) ⊆ Ab(n) for all n and there exists a k such that E(k) 6= As(k),
then (xi)i∈N are conditionally independent and have identically shifted-semicircular
distribution with respect to E.

4. If there exist k1, k2 such that E(k1) 6⊆ Ah(k1) and E(k2) 6⊆ Ab(k2), then (xi)i∈N are
freely independent and have centered semicircular distribution with respect to E.

• boolean case:
If φ is non-degenerated. Let {E(n)}n∈N be a sequence of orthogonal boolean quantum
semigroups such that Bs(n) ⊆ E(n) ⊆ Bo(n) for each n. If the joint distribution of
(xi)i∈N is E(n) invariant, then there are a W ∗-subalgebra(not necessarily contains the
unit of A) B ⊆ A and a φ-preserving conditional expectation E : A → B such that

1. If E(n) = Bs(n) for all n, then (xi)i∈N are boolean independent and identically
distributed with respect to E.

2. If Bs(n) ⊆ E(n) ⊆ Bh(n) for all n and there exists a k such that E(k) has a quotient
algebra E′(k) that As(k) ( E′(k) ⊆ An(n), then (xi)i∈N are boolean independent
and have identically symmetric distribution with respect to E.

3. If Bs(n) ⊆ E(n) ⊆ Bb(n) for all n and there exists a k such that E(k) has a quotient
algebra E′(k) that As(k) ( E′(k) ⊆ Ab(n), then (xi)i∈N are boolean independent
and have identically shifted-Bernoulli distribution with respect to E.

4. If there exist k1, k2 such that E(k1) and E(k2) have quotient algebras E′(k1) ⊆
Ao(k1) and E′(k2) ⊆ Ao(k2) such that E(k1) 6⊆ Ah(k1) and E′(k2) 6⊆ Ab(k2), then
(xi)i∈N are conditionally independent and have centered Bernoulli distribution with
respect to E.

The paper is organized as follows. In section 2, we recall some definitions in noncommutative
probability and combinatorial tools. In section 3, we recall orthogonal Hopf algebras and study
their properties. In section 4, we define boolean quantum semigroups in analogue of easy quan-
tum groups via certain universal conditions. In section 5, we give the proof of our main theorem
and show some applications of the main theorem.

2. Preliminaries and examples

In this section, we recall some necessary definitions and notation in noncommutative proba-
bility. For further details, see texts [9, 11, 12, 20].

2.1. Noncommutative probability. This part is for noncommutative probability theory and
universal independence relations.

Definition 2.1. A noncommutative probability space is a pair (A, φ), where A is a unital
algebra, and φ : A → C is a linear functional such that φ1(A) = 1. Elements in A are called
noncommutative random variables. (A, φ) is a C∗-probability space if A is a C∗-algebra and
φ is a state, i.e. norm one positive linear functional. (A, φ) is a W ∗-probability space if A is
a W ∗-algebra and φ is a normal state, i.e. W ∗-operator continuous state. The elements of A
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are called random variables. Let x ∈ A be a random variable, the distribution of x is a linear
functional µx on C[X] such that

µx(P ) = φ(P (x))

for all P ∈ C[X], where C[X] is the set of complex polynomials in one variable.

In this paper, we will be working on W ∗-probability spaces (A, φ). We require A to be
commutative when we work on classical independence. We require φ to be faithful when we
work on free independence. l When we work on boolean independence, we require φ to be
non-degenerated, i.e. the GNS representation associated with φ is faithful.

Definition 2.2. Let I be an index set. The algebra of noncommutative polynomials in |I|
variables, C〈Xi|i ∈ I〉, is the linear span of 1 and noncommutative monomials of the form

Xk1
i1
Xk2

i2
· · ·Xkn

in
with i1 6= i2 6= · · · 6= in ∈ I and all kj ’s are positive integers. For convenience,

we use C〈Xi|i ∈ I〉0 to denote the set of noncommutative polynomials without a constant term.
Let (xi)i∈I be a family of random variables in a noncommutative probability space (A, φ). Their
joint distribution is a linear functional µ : C〈Xi|i ∈ I〉 → C defined by

µ(Xk1
i1
Xk2

i2
· · ·Xkn

in
) = φ(xk1i1 x

k2
i2
· · · xknin ),

and µ(1) = 1.

Remark 2.3. In general, the joint distribution depends on the order of the random variables.
For example, let I = {1, 2}, then µx1,x2 may not equal µx2,x1 . According to our notation,
µx1,x2(X1X2) = φ(x1x2), but µx2,x1(X1X2) = φ(x2x1).

Definition 2.4. Let (A, φ) be a noncommutative probability space.

• Suppose that A is commutative. A family of unital subalgebras (Ai)i∈I of A are said to
be classical independent if

φ(a1a2 · · · an) = φ(a1)φ(a2) · · · φ(an),

whenever ak ∈ Aik , i,..., in are pairwisely different . Let (xi)i∈I be a family of random
variables and Ai’s be the unital subalgebras generated by xi’s, respectively. We say
the family of random variables (xi)i∈I are classical independent if the family of unital
subalgebras (Ai)i∈I are classical independent.

• A family of unital subalgebras (Ai)i∈I of A are said to be freely independent if

φ(a1 · · · an) = 0,

whenever ak ∈ Aik , i1 6= i2 6= · · · 6= in and φ(ak) = 0 for all k. Let (xi)i∈I be a family of
random variables and Ai’s be the unital subalgebras generated by xi’s, respectively. We
say the family of random variables (xi)i∈I are freely independent if the family of unital
subalgebras (Ai)i∈I are freely independent.

• A family of (not necessarily unital) subalgebras {Ai|i ∈ I} of A are said to be boolean
independent if

φ(x1x2 · · · xn) = φ(x1)φ(x2) · · ·φ(xn)

whenever xk ∈ Aik with i1 6= i2 6= · · · 6= in. A set of random variables {xi ∈ A|i ∈ I}
are said to be boolean independent if the family of non-unital subalgebras Ai, which are
generated by xi respectively, are boolean independent.

One refers to [5] for more details of boolean product of random variables.
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Definition 2.5. An operator valued probability space (A,B, E : A → B) consists of an algebra
A, a subalgebra B of A and a B − B bimodule linear map E : A → B i.e.

E[b1ab2] = b1E[a]b2, E[b] = b

for all b1, b2, b ∈ B and a ∈ A. According to the definition in [19], we call E a conditional
expectation from A to B if E is onto, i.e. E[A] = B. The elements of A are called random
variables.

Since the framework for boolean independence is a non-unital algebra in general, we will not
require our operator valued probability spaces to be unital.

Definition 2.6. Given an algebra B, we denote by B〈X〉 the algebra which is freely generated
by B and the indeterminant X. Let 1X be the identity of C〈X〉, then B〈X〉 is set of linear
combinations of the elements in B and the noncommutative monomials b0Xb1Xb2 · · · bn−1Xbn
where bk ∈ B ∪ {C1X} and n ≥ 0. The elements in B〈X〉 are called B-polynomials. In addition,
B〈X〉0 denotes the subalgebra of B〈X〉 which does not contain a constant term i.e. the linear
span of the noncommutative monomials b0Xb1Xb2 · · · bn−1Xbn where bk ∈ B∪{C1X} and n ≥ 1.

Operator-valued independence are defined as follows:

Definition 2.7. Given an operator valued probability space (A,B, E : A → B) such that A and
B are unital.

• Suppose that A is commutative. A family of unital subalgebras {Ai ⊃ B}i∈I are said to
be conditionally independent with respect to E if

E[a1 · · · an] = E[a1]E[a2] · · ·E[an],

whenever ak ∈ Aik and i1, ..., in are pairwisely different. A family of (xi)i∈I are said to be
conditionally independent over B if the unital subalgebras {Ai}i∈I which are generated
by xi and B respectively are conditionally independent, or equivalently

E[p1(xi1)p2(xi2) · · · pn(xin)] = E[p1(xi1)]E[p2(xi2)] · · ·E[pn(xin)],

whenever i1, ..., in are pairwisely different and p1, ..., pn ∈ B〈X〉.

• A family of unital subalgebras {Ai ⊃ B}i∈I are said to be freely independent with respect
to E if

E[a1 · · · an] = 0,

whenever i1 6= i2 6= · · · 6= in, ak ∈ Aik and E[ak] = 0 for all k. A family of (xi)i∈I
are said to be freely independent over B, if the unital subalgebras {Ai}i∈I which are
generated by xi and B respectively are freely independent, or equivalently

E[p1(xi1)p2(xi2) · · · pn(xin)] = 0,

whenever i1 6= i2 6= · · · 6= in, p1, ..., pn ∈ B〈X〉 and E[pk(xik)] = 0 for all k.

• A family of unital subalgebras {Ai ⊃ B}i∈I are said to be boolean independent with
respect to E if

E[a1 · · · an] = E[a1]E[a2] · · ·E[an],

whenever ak ∈ Aik and i1 6= i2 6= · · · 6= in. A family of random variables {xi}i∈I are
said to be boolean independent over B, if the non-unital subalgebras {Ai}i∈I which are
generated by xi and B respectively are boolean independent, or equivalently

E[p1(xi1)p2(xi2) · · · pn(xin)] = E[p1(xi1)]E[p2(xi2)] · · ·E[pn(xin)],
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whenever i1 6= i2 6= · · · 6= in and p1, ..., pn ∈ B〈X〉0.

2.2. Partitions and cumulants. All these three independence relations have rich combinato-
rial theories which we will recall in the follows. One can see [1, 10, 16] for details.

Definition 2.8. Let S be an ordered set:

1. A partition π of a set S is a collection of disjoint, nonempty sets V1, ..., Vr such that the
union of them is S. V1, ..., Vr are blocks of π. The collection of all partitions o S will be
denoted by P (S)

2. Given two partitions π, σ, we say π ≤ σ if each block of π is contained in a block of σ.
3. A partition π ∈ P (S) is noncrossing if there is no quadruple (s1, s2, r1, r2) such that

s1 < r1 < s2 < r2, s1, s2 ∈ V , r1, r2 ∈ W and V,W are two different blocks of π.
4. A partition π ∈ P (S) is interval if there is no triple (s1, s2, r) such that s1 < r < s2,

s1, s2 ∈ V , r ∈ W and V,W are two different blocks of π.
5. Let i = (i1, ..., ik) be a sequence of indices of I and [k] = {1, ..., k}. We denote by ker i

the element of P ([k]) whose blocks are the equivalence classes of the relation

s ∼ t ⇔ is = it

Remark 2.9. In this paper, we are interested in S = {1, ..., k} for some k ∈ N. It is easy to see
that interval partitions are noncrossing.

Definition 2.10. Let (A, E : A → B) be an operator valued probability space:

1. A B-functional is a n-linear map ρ : An → B such that

ρ(b0a1b1, a2b2, ..., anbn) = b0ρ(a1, b1a2, ..., bn−1an)bn

for all b0, ..., bn ∈ B ∪ {1A}.

2. For k ∈ N, let ρ(k) be a B-functional.
3. If B is commutative. Given π ∈ P (n), we define a B-functional ρ(π) : An → B by the

formula:

ρ(π)(a1, ..., an) =
∏

V ∈π

ρ(V )(a1, ..., an),

where if V = (i1 < i2 < · · · < is) is a block of π then

ρ(V )(a1, ..., an) = ρ(s)(ai1 , ..., ais).

4. Given π ∈ NC(n), then a ρ(π) : An → B can be defined recursively as follows:

ρ(π)(a1, ..., an) = ρ(π\V )(a1, ..., alρ
(s)(al+1,...,al+s

), al+s+1, ..., an)

where V = (l + 1, l + 2, ..., l + s) is an interval block of π.

Remark 2.11. If B is noncommutative, there is no natural way to compute ρ(π)(a1, ..., an) for
π 6∈ NC(n).

Definition 2.12. Let (A,B, E : A → B) be an operator-valued probability space:

1. If B is commutative, then the operator-valued classical cumulants c
(n)
E : An → B are

defined by the classical moment-cumulant formula:

E[a1 · · · an] =
∑

π∈P (n)

c
(π)
E (a1, ..., an),

for all a1, ..., an ∈ A.
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2. The operator-valued free cumulants κ
(k)
E : An → B are defined by the free moment-

cumulant formula:

E[a1 · · · an] =
∑

π∈NC(n)

κ(π)(a1, ..., an),

for all a1, ..., an ∈ A.

3. The operator-valued boolean cumulants b
(k)
E : An → B are defined by the boolean

moment-cumulant formula:

E[a1 · · · an] =
∑

π∈I(n)

b
(π)
E (a1, ..., an),

for all a1, ..., an ∈ A.

Note that all these three types of cumulants can be resolved recursively, e.g.

c
(1)
E (a1) = E[a1]

and
c
(n)
E (a1, ..., an) = E[a1 · · · an] −

∑

π∈P (n),π 6=1n

c
(π)
E (a1, ..., an),

where c
(π)
E (a1, ..., an) depends on c

(k)
E (a1, ..., an) for k = 1, ..., n − 1 if π 6= 1n. The same, to

determine κ
(n)
E and b

(n)
E we just need to replace P (n) by NC(n) and I(n), respectively.

Theorem 2.13. Let (A,B, E : A → B) be an operator-valued probability space and (xi)i∈I be a
family of random variables in A:

1. If A is is commutative, then (xi)i∈I are conditionally independent with respect to E iff

c
(n)
E (b0xi1b1, ..., xinbn) = 0,

whenever ik 6= il for some 1 ≤ k, l ≤ n.
2. (xi)i∈I are free independent with respect to E iff

κ
(n)
E (b0xi1b1, ..., xinbn) = 0,

whenever ik 6= il for some 1 ≤ k, l ≤ n.
3. (xi)i∈I are boolean independent with respect to E iff

b
(n)
E (b0xi1b1, ..., xinbn) = 0,

whenever ik 6= il for some 1 ≤ k, l ≤ n.

Proof. The classical case is well know, the free case is due to Speicher and the scalar boolean
case is due to Lehner. For completeness, we provide a sketch of proof to operator-valued boolean
case:

If ik 6= il for some 1 ≤ k, l ≤ n, then there exists l such that il 6= il+1. Therefore, we have
∑

π∈I(n)

b
(π)
E (xi1b1, ..., xinbn) = E[xi1b1, ..., xinbn]

= E[xi1b1, ..., xilbl]E[xil+1
bl+1, ..., xinbn]

=
∑

π1∈I(l)

b
(π1)
E (xi1b1, ..., xilbl)

∑

π2∈I(n−l)

b
(π2)
E (xil+1

bl+1, ..., xinbn)

We see that the coefficient of b
(n
E (xi1b1, ..., xinbn) on the right is 0 which implies that b

(n
E (xi1b1, ..., xinbn) =

0.
�
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Definition 2.14. Let (A,B, E : A → B) be an operator-valued probability space. Two random
variables x1, x2 ∈ A are said to be conditionally(free, boolean) i.i.d. respect to E if they are
conditionally(free, boolean) independent and have a same distribution. Suppose x1, x2 ∈ A
are conditionally(free boolean) i.i.d. x1 is said to be symmetric if x1 and −x1 have a same
distribution. x1 is said to be Gaussian (semicircular, Bernoulli) distributed if x1 and αx1 + βx2
have a same distribution whenever α, β are real numbers such that α2 + β2 = 1. x1 is shifted
Gaussian (semicircular, Bernoulli) distributed if x1 − b is Gaussian (semicircular, Bernoulli)
distributed for some b ∈ B.

Remark 2.15. Gaussian (semicircular, Bernoulli) distribution in Definition2.14 is equivalent
to the usually definition which is also equivalent to the following cumulants definition. In
scalar case for free independence and classical independence, the tail algebra can be considered
as the commutative algebra generated by the unit of the probability space. Therefore, the
shifted constant commutes with random variables. Graphically, density functions of shifted
scalar Gaussian(Semicircular) laws are density functions of centered Gaussian(Semicircular) laws
translated by a constant. For example, the density function of the centered semicircular law
with variance 1 is

1

2π

√

4 − x2

on [−2, 2], where the density function of shifted semicircular law with variance 1 are in the form

1

2π

√

4 − (x− a)2

on [−2 + a, 2 + a]. But, for boolean independence, the tail algebra does not necessarily contain
the unit of the space. Therefore, the shifted constant may not commute with random variables.
Graphically, density functions of shifted scalar Bernoulli laws are not simply density functions
of centered Bernoulli laws translated by a constant. For example, the density function of the
centered semicircular law with variance 1 is

1/2δ−1 + 1/2δ1,

where the density function of shifted Bernoulli law are in the form

aδa + bδ−b

a + b

for a, b > 0.

Theorem 2.16. Let (A,B, E : A → B) be an operator-valued probability space, and (xi)i∈I be
a family of random variables in A:

1. If A is is commutative, then the B-valued joint distribution of (xi)i∈I has the property
corresponding to D in the table below iff for any π ∈ P (n).

c
(π)
E (b0xi1b1, ..., xinbn) = 0,

unless π ∈ D(n) and π ≤ keri where i = (i1, ..., in).

Partitions D Joint distribution

P : All partitions Classical independent
Ph: Partitions with even block sizes Classical independent and symmetric
Pb: Partitions with block size 1 or 2 Classical independent and Gaussian
P2: Pair partitions Classical independent and centered Gaussian
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2. The B-valued joint distribution of (xi)i∈I has the property corresponding to D in the
table below iff for any π ∈ P (n).

κ
(π)
E (b0xi1b1, ..., xinbn) = 0,

unless π ∈ D(n) and π ≤ keri.

Partitions D Joint distribution

P : Noncrossing partitions Free independent
Ph: Noncrossing Partitions with even block sizes Free independent and symmetric
Pb: Noncrossing Partitions with block size 1 or 2 Free independent and semicircular
P2: Noncrossing Pair partitions Free independent and centered semicircular

3. The B-valued joint distribution of (xi)i∈I has the property corresponding to D in the
table below iff for any π ∈ P (n).

b
(π)
E (b0xi1b1, ..., xinbn) = 0,

unless π ∈ D(n) and π ≤ keri.

Partitions D Joint distribution

I: Interval partitions Boolean independent
Ih: Interval partitions with even block sizes Boolean independent and symmetric
Ib: Interval partitions with block size 1 or 2 Boolean independent and Bernoulli
I2: Interval pair partitions Boolean independent and centered Bernoulli

Proof. These results are well know for free case and classical case. For boolean case, one just
need to follow the proof for free case and replace noncrossing partitions by interval partitions. �

3. Noncommutative symmetries

In this section, we will recall distributional symmetries for classic independence are free inde-
pendence from [3].

Definition 3.1. An orthogonal Hopf algebra is a unital C∗-algebra A generated by n2 selfadjoint
elements {ui.j|i, j = 1, ..., n}, such that the following hold:

1. The inverse of u = (ui,j)i,j=1,....n ∈ Mn(A) is the transpose ut = (uj,i)i,j=1,...n, i.e.
n
∑

k=1

ui,kuj,k =
n
∑

k=1

uk,iuk,j = δi,j1A.

2. ∆(ui,j) =
n
∑

k=1

ui,k ⊗ uk,j determines a C∗-unital homomorphism ∆ : A → A⊗min A.

3. ǫ(ui,j) = δui,j defines a homomorphism ǫ : A → C.
4. S(ui,j) = uj,i defines a homomorphism S : A → Aop.

This definition adapted from the fundamental work of Woronowicz[24]. Following the notion
of Wang’s free quantum groups in [21, 22], one can define universal algebras A generated by n2

noncommutative variables {ui,j}i,j=1,...,n which satisfy some relations R. Moreover, for suitable
choices of R, we will get Hopf algebras in the sense of Woronowicz[24].

In [3], Banica and Speicher found the following conditions which can be used to construct
Hopf orthogonal algebras:
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Definition 3.2. A matrix u = (ui,j)i,j=1,...,n ∈ Mn(A) over a C∗-algebra A is called:

• Orthogonal, if all entries of u are selfadjoint, and uut = utu = 1n,
• magic, if it is orthogonal, and its entries are projections.
• cubic, if it is orthogonal, and ui,jui,k = uj,iuk,i = 0, for j 6= k.

• bistochastic, if it is orthogonal, and
n
∑

i=1
ui,j =

n
∑

j=1
uk,i = 1A, for all j, k.

• magic’,if it is cubic, with the same sum on rows and columns.
• bistochastic’,if it is orthogonal, with the same sum on rows and columns

The universal algebras associated with the above conditions are defined as follows:

Definition 3.3. Ag(n) with g = o, s, h, b, s, s′, b′ is the universal C∗-algebra generated by the
entries of a n×n matrix which is respectively orthogonal, magic, cubic, bistochastic, magic’ and
bistochastic’. Cg(n) with g = o, s, h, b, s, s′, b′ is the universal commutative C∗-algebra generated
by the entries of a n × n matrix which is respectively orthogonal, magic, cubic, bistochastic,
magic’ and bistochastic’.

Especially, for each n, As(n) and Ao(n) are Wang’s quantum permutation group and quantum
orthogonal group introduced in [22, 21]. Cg(n) can be considered as the abelianization of Ag(n)
for all g = o, s, h, b, s, s′, b′. It should be mentioned here that there are 7 easy quantum groups
in total, see [23].

According to the definitions, we have the following diagram:

Ao(n) //

��

Ab′(n) //

��

Ab(n)

��

Ah(n) // As′(n) // As(n)

and
Co(n) //

��

Cb′(n) //

��

Cb(n)

��

Ch(n) // Cs′(n) // Cs(n)

and
Ag(n) → Cg(n),

for g = o, s, h, b, s, s′, b′. Here, the arrow means that there exists a morphism of orthogonal Hopf
algebras (A, u) → (B, v) which is a C∗-homomorphism fromA to B such that ui,j → vi,j. In
other words, (A, u) → (B, v) implies that B is a quotient C∗-algebra of A. We will use B ⊂ A
for (A, u) → (B, v).

Proposition 3.4. Let E(n) be an orthogonal Hopf algebra generated by n2 selfadjoint elements
{ui,j}i,j=1,...,n, then

1. If E(n) 6⊂ Ah(n), then there exists a j such that
n
∑

k=1

u4k,j 6= 1E(n).

2. If E(n) 6⊂ Ab(n), then there exists a j such that
n
∑

k=1

uk,j 6= 1E(n).

Proof. 1. Suppose
n
∑

k=1

u4k,i = 1E(n), for all i. Since
n
∑

k=1

u2k,i = 1E(n) and u4k,i ≤ u2k,i, we have

u4k,i = u2k,i.
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(u2i,j)i,j=1,...,n is a matrix of orthogonal projections with sum 1 on rows and columns. Therefore,

u2i,ju
2
i,k = u2j,iu

2
k,i = 0

for j 6= k. Since ui,j and ui,k are selfadjoint, we have

ui,jui,k = uj,iuk,i = 0

which implies that E(n) is a quotient algebra of Ah(n). It is a contradiction.

2. Suppose
n
∑

k=1

uk,i = 1E(n), for all i. Then, for each i, we have

n
∑

l=1

ui,l =
n
∑

l=1

n
∑

k=1

ui,luk,l =
n
∑

k=1

n
∑

l=1

ui,luk,l =
n
∑

k=1

δi,k1E(n) = 1E(n).

Therefore, E(n) is a quotient algebra of Ab(n) which leads to a contradiction. �

Proposition 3.5. Let E(n) be an orthogonal Hopf algebra generated by n2 selfadjoint elements
{ui,j}i,j=1,...,n such that As(n) ⊂ E(n) ⊂ Ao(n). Then, the following hold:

1. If E(n) ⊂ Ah(n) and E(n) ⊂ Ab(n), then E(n) = As(n).
2. If E(n) 6⊂ Ah(n) and E(n) ⊂ Ab(n), then ∃ i′ such that

n
∑

k=1

umk,i′ 6= 1,

for all m > 2.
3. If E(n) 6⊂ Ab(n) and E(n) ⊂ Ah(n), then ∃ i′ such that

n
∑

k=1

umk,i′ 6= 1,

for all odd numbers m.
4. If E(n) 6⊂ Ah(n) and E(n) 6⊂ Ah(n), then ∃ i′1, i2 such that

n
∑

k=1

umk,i′1
6= 1,

for all m > 2, and
n
∑

k=1

uk,i′2 6= 1,

Proof. It is obvious that ‖ui,j‖ ≤ 1 for all i, j = 1, ...n.
1. By assumption, we have

n
∑

k=1

ui,k = 1E(n)

and
ui,jui,k = 0

for j 6= k. Therefore,

ui,j = ui,j

n
∑

k=1

ui,k = u2i,j

for all i, j. It implies that E(n) is a quotient algebra of As(n), so E(n) = As(n).
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2. By Proposition 3.5, there exists i′ such that
n
∑

k=1

u4k,i′ 6= 1.

Therefore, there exists k′ such that

u4k′,i′ < u2k′,i′

which implies that the spectrum of uk′,i′ contains a number a such that −1 < a < 1. Therefore,

umk′,i′ < u2k′,i′

for all natural number m > 2. Hence, we have

n
∑

k=1

umk,i′ < 1E(n),

for m > 2.
3. According to Proposition 3.5, there exists i′ such that

n
∑

k=1

uk,i′ 6= 1.

Therefore, there exists k′ such that uk′,i′ is not an orthogonal projection which implies that

u2m+1
k′,i′ < u2mk′,i′ .

Thus, we have
n
∑

k=1

u2m+1
k,i′ <

n
∑

k=1

u2mk,i′ =

n
∑

k=1

umk,i′ = 1E(n),

4. Combine Case 2 and 3, the proof is complete. �

Following the proof above, we have

Corollary 3.6. Let E(n) be an orthogonal Hopf algebra generated by n2 selfadjoint elements
{ui,j}i,j=1,...,n such that Cs(n) ⊂ E(n) ⊂ Co(n). Then, the following hold:

1. If E(n) ⊂ Ah(n) and E(n) ⊂ Ab(n), then E(n) = As(n).

2. If E(n) 6⊂ Ah(n) and E(n) ⊂ Ab(n), then ∃ i′ such that
n
∑

k=1

umk,i′ 6= 1, for all m > 2.

3. If E(n) 6⊂ Ab(n) and E(n) ⊂ Ah(n), then ∃ i′ such that
n
∑

k=1

umk,i′ 6= 1, for all odd numbers

m.

4. If E(n) 6⊂ Ah(n) and E(n) 6⊂ Ah(n), then ∃ i′1, i2 such that
n
∑

k=1

um
k,i′1

6= 1, for all m > 2,

and
n
∑

k=1

uk,i′2 6= 1,

Now, we turn to define noncommutative distributional symmetries by maps of quantum family
of So ltan[15]:

Definition 3.7. Let (A,∆) be a quantum group and V be a unital algebra. By a (right) coaction
of the quantum group A on V, we mean a unital homomorphism α : V → V ⊗A such that

(α⊗ idA)α = (id⊗ ∆)α.
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Definition 3.8. Given an orthogonal Hopf algebra E(n) generated by {ui,j}i,j=1,...n, we have a
natural coaction αn of E(n) on C〈X1, ...,Xn〉 such that

αn : C〈X1, ...,Xn〉 → C〈X1, ...,Xn〉 ⊗ E(n)

is an algebraic homomorphism defined via αn(Xi) =
∑n

k=1Xk ⊗ uk,i for all i = 1, ..., n.

Definition 3.9. Given a probability space (A, φ), a sequence of random variables (x1, ..., xn)
of A and an orthogonal Hopf algebra E(n) generated by {ui,j}i,j=1,...n. We say that the joint
distribution µx1,...,xn

of x1, ..., xn is E(n) invariant if

µx1,...,xn
(p)1E(n) = µx1,...,xn

⊗ idE(n)(αn(p)),

for all p ∈ C〈X1, ...,Xn〉.

Remark 3.10. Noncommutative distributional symmetries, which are associated with E(n)
such that As ⊂ E(n) ⊂ Ao(n)(Cs ⊂ E(n) ⊂ Co(n)), will be used to characterize free(classical)
type de Finetti theorems.

Proposition 3.11. Given a probability space (A, φ) and a sequence of random variables (x1, ..., xn)
of A. E(n) and F (n) are two orthogonal Hopf algebras such that E1(n) ⊂ E2(n). Then,
(x1, ..., xn) is E1(n)-invariant if E2(n)-invariant.

Proof. Let {u
(l)
i,j}i,j=1,...,n be generators of El(n) for l = 1, 2. Since E1(n) ⊂ E2(n), there exists a

C∗-homomorphism Φ : E2(n) → E1(n) such that

Φ(u
(2)
i,j ) = u

(1)
i,j

for all i, j. (x1, ..., xn) is E2(n)-invariant is equivalent to that

µx1,...,xn
(Xi)1E2(n) =

∑

j∈[n]k

µx1,...,xn
(Xj) ⊗ u

(2)
i,j ,

for all monomials Xi1 · · ·Xik ∈ C〈X1, ...,Xn〉. Apply Φ on both sides of the above equation, we
get

µx1,...,xn
(Xi)1E1(n) =

∑

j∈[n]k

µx1,...,xn
(Xj) ⊗ u

(1)
i,j ,

which implies that (x1, ..., xn) is E1(n)-invariant. �

Given an orthogonal Hopf algebra E(n) generated by {ui,j}i,j=1,...,n. Then , for k ∈ N , E(n)
can be considered as an orthogonal Hopf algebra E(n, k) generated by {vi,j}i,j=1,...,n+k such that

vi,j =

{

ui,j if i, j ≤ n
δi,j1E(n) otherwise

We will call E(n, k) the k-th extension of E(n). To study de Finettil theorems for all orthogonal
Hopf algebras E(n), we need to extend E(n)-invariance condition on n random variables to
infinitely many random variables.

Definition 3.12. Given a probability space (A, φ), a sequence of random variables (xi)i∈N of
A and an orthogonal Hopf algebra E(n) generated by {ui,j}i,j=1,...n. We say that the joint
distribution µ of (xi)i∈N is E(n) invariant if the joint distribution of (x1, ..., xn+k) is E(n, k)-
invariant for all k ∈ N.
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4. Quantum semigroups in analogue of easy quantum groups

Inspired by the previous work in [11], we will define distributional symmetries for boolean
independent random variables via quantum semigroups. We briefly recall quantum semigroups’
definition here: For any C∗-algebras A and B, the set of morphisms Mor(A,B) consists of all
C∗-algebra homomorphisms acting from A to M(B), where M(B) is the multiplier algebra of
B, such that φ(A)B is dense in B. If A and B are unital C∗-algebras, then all unital C∗-
homomorphisms from A to B are in Mor(A,B). In [15],

Definition 4.1. By a quantum semigroup we mean a C∗-algebra A endowed with an additional
structure described by a morphism ∆ ∈ Mor(A,A⊗A) such that

(∆ ⊗ idA)∆ = (idA ⊗ ∆)∆.

The quantum semigroups for boolean independence are unital universal C∗-algebras generated
by an orthogonal projection P and entries of n× n matrices which satisfying certain relation R
related to P:

Definition 4.2. Let u = (ui,j)i,j=1,...,n ∈ Mn(A) be an n × n matrix over a C∗-algebra A and
P be an orthogonal projection in A, the pair (u,P) is called:

1. P-orthogonal, if all entries of u are selfadjoint, and uutP = utuP = 1n ⊗ P i.e.
n
∑

k=1

ui,kuj,kP =
n
∑

k=1

uk,iuk,jP = δi,jP.

2. P-magic, if it is P-orthogonal, and the entries of u are projections.
3. P-cubic, if it is P-orthogonal, and ui,jui,kP = uj,iuj,kP = 0, for j 6= k.

4. P-bistochastic, if it is P-orthogonal, and
n
∑

j=1
ui,jP =

n
∑

j=1
uk,iP = P, for all j, k.

5. P-’, if
n
∑

j=1
ui,jP =

n
∑

j=1
uk,iP, for all j, k.

6. P-magic’, if it is P-cubic and P-’
7. P-bistochastic’,if it is P-orthogonal and P-’

Unlike the situation in quantum groups, these conditions cannot define universal C∗-algebras
since they cannot ensure that ui,j’s are bounded. Therefore, we need an additional condition to
control the norms of u′i,js. We say (ui,j)i,=1,...n is norm ≤ 1 if the norm ‖(ui,j)i,j=1,...,n‖ of the
matrix is ≤ 1

Definition 4.3. Bg(n) with g = o, s, h, b, s, s′, b′ is the unital universal C∗-algebra generated by
the entries of a n × n norm ≤ 1 matrix (ui,j)i,=1,...n and an orthogonal projection P which is
respectively P-orthogonal, P-magic, P-cubic, P-bistochastic, P-magic’ and P-bistochastic’.

On the C∗-algebra Bg(n) with g = o, s, h, b, s, s′, b′, we can always define a unital C∗-
homomorphism

∆ : Bg(n) → Bg(n) ⊗Bg(n)

by the following formulas:

∆ui,j =

n
∑

k=1

ui,k ⊗ uk,j

and

∆P = P⊗P, ∆I = I ⊗ I.
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To show the coproduct is well defined, we need the show that the (∆ui,j)i,j=1,...,n and P⊗P

satisfy the universal conditions as (ui,j)i,j=1,...,n and P do:
Norm condition: If ‖(ui,j)i,j=1,...n‖ ≤ 1, we have

‖(∆ui,j)i,j=1,...n‖ = ‖(
n
∑

k=1

ui,k⊗uk,j)i,j=1,...n‖ = ‖(ui,j⊗1n)i,j=1,...n(1n⊗ui,j)i,j=1,...n‖ ≤ ‖(ui,j)i,j=1,...n‖
2 ≤ 1.

P-orthogonal: If
n
∑

k=1

ui,kuj,kP =
n
∑

k=1

uk,iuk,jP = δi,jP, then

n
∑

k=1

∆ui,k∆uj,k∆P

=
n
∑

k=1

(
n
∑

l=1

ui,l ⊗ ul,k)(
n
∑

m=1
uj,m ⊗ um,k)(P⊗P)

=
n
∑

k=1

n
∑

l=1

n
∑

m=1
ui,luj,mP⊗ ul,kum,kP

=
n
∑

l=1

n
∑

m=1
ui,luj,mP⊗ δm,lP

=
n
∑

l=1

ui,luj,lP⊗P

= δi,jP⊗P.

The same we have
n
∑

k=1

∆uk,i∆uk,j∆P = δi,jP⊗P.

P-cubic: Since ui,jui,kP = uj,iuj,kP = 0, for j 6= k, we have

∆ui,j∆ui,k∆P

=
n
∑

l,m=1

ui,lui,mP⊗ ul,jum,kP

=
n
∑

l=1

ui,lui,lP⊗ ul,jul,kP

= 0,

whenever j 6= k. Then same, we have

∆uj,i∆uj,k∆P = 0,

whenever j 6= k.

P-bistochastic: If
n
∑

j=1
ui,jP =

n
∑

j=1
uj,iP = P, for all j = 1, ..., n.

n
∑

j=1
∆ui,j∆P

=
n
∑

j=1

n
∑

k=1

ui,kP⊗ uk,jP

=
n
∑

j=1
ui,jP⊗P

= P⊗P.
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The same we will have
n
∑

j=1
∆uj,i∆P = P⊗P, for all j.

P’ -condition: Let r =
n
∑

j=1
ui,jP =

n
∑

j=1
uj,iP, for j 6= k.

n
∑

j=1
∆ui,j∆P

=
n
∑

j,l=1

ui,lP⊗ ul,jP

=
n
∑

l=1

ui,lP⊗ r

= r ⊗ r,

for all j. The same we will have
n
∑

j=1
∆uj,i∆P = r ⊗ r for all j.

Therefore, ∆ is a well defined C∗-homomorphism and (Bg(n),∆) with g = o, s, h, b, s, s′, b′ are
quantum semigroups. As the relation for easy quantum groups, we have the following diagram
for boolean quantum semigroups:

Bo(n) //

��

Bb′(n) //

��

Bb(n)

��

Bh(n) // Bs′(n) // Bs(n)

We can see that easy quantum groups could be quotient algebras of these easy quantum semi-
groups with requirement of P = 1. The algebras Bg(n) generated by the generators of Bg(n)
with g = o, s, h, b are quotient algebras of Hayase’s Hopf algebras C(GI2

n ), C(GI
n), C(GIh

n ), C(GIb
n )

in [7], respectively. Actually, Bg(n) with g = o, s, h, b satisfy Hayase’s universal conditions for
C(GI2

n ), C(GI
n), C(GIh

n ), C(GIb
n ). To check the some vanishing conditions, we need the following

notation for convenience: Given π1 ∈ I(k1) and π2 ∈ I(k2), π = π1π2 ∈ I(k1 + k2) denotes
the concatenation of π1 and π2. Given j1 = (j1, ..., jk1) ∈ [n]k1 and j2 = (j′1, ..., j

′
k2

) ∈ [n]k2 ,

j = j1j2 = (j1, ..., jk1 , j
′
1, ..., j

′
k2

) ∈ [n]k1+k2 .
According to Definition 2.8, it is obvious that

Lemma 4.4. Let π ∈ I(k1 + k2) such that π = π1π2 for some π1 ∈ I(k1) and π2 ∈ P (k2). Let
j = j1 + j2 such that j1 ∈ [n]k1 and j2 ∈ [n]k2 . Then, π ≤ kerj iff πi ≤ ker ji for i = 1, 2.

Therefore ,we have the following:

Lemma 4.5. Given π1 ∈ I(k1), π2 ∈ P (k2) and j = j1 + j2 such that j1 ∈ [n]k1 and j2 ∈ [n]k2 .
If

∑

ii∈[nki ],πi≤ker ii

uii,jiP =

{

P if π ≤ ker ji
0 otherwise

for i = 1, 2. Then, we have

∑

i∈[nk1+k2 ],π1π2≤ker i

ui,jP =

{

P if π ≤ ker j
0 otherwise
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Proof. By a direct computation, we have:

∑

i∈[nk1+k2 ]
π1π2≤ker i

ui,jP =
∑

i1∈[nk1 ]
π1≤ker i1

∑

i2∈[nk2 ]
π2≤ker i2

ui1,j1ui2,j2P =











∑

i1∈[nk1 ]
π1≤ker i1

ui1,j1P if π1 ≤ ker j2

0 otherwise

Therefore,
∑

i∈[nk1+k2 ]
π1π2≤ker i

ui,jP

{

= P π1 ≤ ker j1 andπ2 ≤ ker j2
0 otherwise

,

which completes the proof. �

Now, we can turn to check a vanishing condition:

Lemma 4.6. Let ui,j’s and P be the standard generators of Bo(n),Bs(n),Bh(n),Bb(n). Then,
we have

∑

i∈[nk],π≤ker i

ui,jP =

{

P if π ≤ ker j
0 otherwise

for π ∈ I2(k), I(k), Ih(k), Ib(k), respectively.

Proof. 1. For Bo(n), k = 2. The identity holds by the definition of Bo(n). Since all partitions
in I2(n) are concatenations of pair partitions by Lemma 4.5, the identity is true.

2. For Bb(n), the identity holds by the definition of Bb(n) when π is a single partition or a
partition. Since all partitions in Ib(n) are concatenations of single partitions and pair partitions,
by Lemma 4.5, the identity is true.

3. For Bh(n) we just need to check π = 12m ∈ Ih(2m) for all m ∈ N. It follows that

∑

i∈[n]2m

π≤ker i

ui,jP =

n
∑

i=1

ui,j1 · · · ui,j2mP.

It equals zero if jl 6= jl+1 for some l, otherwise

n
∑

i=1

ui,j1 · · · ui,j2mP =

n
∑

i=1

u2mi,j1P =

n
∑

i=1

u2m−2
i,j1

n
∑

l=1

u2l,j1P =

n
∑

i=1

u2m−2
i,j1

P = · · · =

n
∑

l=1

u2l,j1P = P.

Since all partitions in Ib(n) are concatenations of blocks of even length, by Lemma 4.5, the
identity is true.

4. For Bs(n) we just need to check π = 1m ∈ I(m), for all m ∈ N. It follows that

∑

i∈[n]m

π≤ker i

ui,jP =

n
∑

i=1

ui,j1 · · · ui,jmP.

It equals zero if jl 6= jl+1 for some l, otherwise

n
∑

i=1

ui,j1 · · · ui,jmP =
n
∑

i=1

umi,j1P =
n
∑

i=1

um−1
i,j1

n
∑

l=1

ul,j1P =
n
∑

i=1

um−1
i,j1

P = · · · =
n
∑

l=1

ul,j1P = P.
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Since all partitions in Ib(n) are concatenations of blocks of arbitrary length, by Lemma 4.5, the
identity is true. �

Now, we define noncommutative distributional symmetries for boolean independence in gen-
eral:

Definition 4.7. An orthogonal boolean quantum semigroup is a unital C∗-algebra A generated
by n2 selfadjoint elements {ui.j |i, j = 1, ..., n} and an orthogonal projection P, such that the
following hold:

1. u = (ui,j)i,j=1,....n ∈ Mn(A) is norm≤ 1 and (u,P) is P-orthogonal.

2. ∆(ui,j) =
n
∑

k=1

ui,k ⊗ uk,j and ∆P = P⊗P,∆I = I ⊗ I determine a C∗-unital homomor-

phism ∆ : A → A⊗min A.

Definition 4.8. Let (A,∆) be a quantum semigroup and V be a unital algebra. By a right
coaction of the quantum semigroup A on V, we mean a unital homomorphism α : V → V ⊗ A
such that

(α⊗ idA)α = (id⊗ ∆)α.

Definition 4.9. Given an orthogonal boolean quantum semigroup E(n) generated by {ui,j}i,j=1,...n

and P, we have a natural coaction αn of E(n) on C〈X1, ...,Xn〉 such that

αn : C〈X1, ...,Xn〉 → C〈X1, ...,Xn〉 ⊗ E(n)

is an algebraic homomorphism defined via αn(Xi) =
∑n

k=1Xk ⊗ uk,i for all i.

Definition 4.10. Given a probability space (A, φ), a sequence of random variables (x1, ..., xn)
of A and an orthogonal boolean quantum semigroup E(n) generated by {ui,j}i,j=1,...n and P.
We say that the joint distribution µx1,...,xn

of x1, ..., xn is E(n) invariant if

µx1,...,xn
(p)P = µx1,...,xn

⊗ idE(n)(αn(p))P,

for all p ∈ C〈X1, ...,Xn〉.

The same as matrix quantum groups, we can define E(n) invariance condition for infinite
sequences. Given an orthogonal boolean quantum semigroup E(n) generated by {ui,j}i,j=1,...,n

and P then , for k ∈ N , E(n) can be considered as an orthogonal boolean quantum semigroup
E(n, k) generated by {vi,j}i,j=1,...,n+k and P′ such that

vi,j =

{

ui,j if i, j ≤ n
δi,j1E(n) otherwise

and P′ = P. We will call E(n, k) the k-th extension of E(n).

Definition 4.11. Given a probability space (A, φ), a sequence of random variables (xi)i∈N ∈
A and an orthogonal Hopf algebra E(n) generated by {ui,j}i,j=1,...n. We say that the joint
distribution µ of (xi)i∈N is E(n) invariant if the joint distribution of (x1, ..., xn+k) is E(n, k)-
invariant for all k ∈ N.

Proposition 4.12. Let (A,B, E : A → B) be an operator valued probability space and {xi}i=1,...,n

be a sequence of random variables in A. Let φ be a linear functional on A such that φ(·) =
φ(E[·]). Then, in probability space (A, φ), we have

• If {xi}i=1,...,n is identically distributed and boolean independent with respect to E, then
the sequence is Bs-invariant.

• If {xi}i=1,...,n is identically symmetric distributed and boolean independent with respect
to E, then the sequence is Bh-invariant.
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• If {xi}i=1,...,n has identically shifted Bernoulli distribution and is boolean independent
with respect to E, then the sequence is Bb-invariant.

• If {xi}i=1,...,n has identically centered Bernoulli distribution and boolean independent
with respect to E, then the sequence is Bo-invariant.

Proof. Suppose that the joint distribution of {xi}i=1,...,n satisfies one of the conditions specified
in the statement of the proposition, and let D(k) be the partition family associated to the
corresponding quantum semigroups. Let Xj = Xj1 · · ·Xjk , by Lemma 4.6 and 2.16, we have

µx1,...,xn
(αn(Xj))P =

∑

i∈[n]k
µx1,...,xn

(Xi)ui,jP

=
∑

i∈[n]k
φ(xi)ui,jP

=
∑

i∈[n]k
φ(E[xi])ui,jP

=
∑

i∈[n]k

∑

π∈D(k)

φ(b
(π)
E (xi))ui,jP

=
∑

π∈D(k)

∑

i∈[n]k
φ(b

(π)
E (xi))ui,jP

=
∑

π∈D(k)

∑

i∈[n]k

π≤ker i

φ(b
(π)
E (xi))ui,jP

=
∑

π∈D(k)

∑

i∈[n]k

π≤ker i

φ(b
(π)
E (x1, ..., x1))ui,jP

=
∑

π∈D(k)
π≤ker j

φ(b
(π)
E (x1, ..., x1))P

=
∑

π∈D(k)
π≤ker j

φ(b
(π)
E (xj))P

= φ(E[xj])P
= φ(xj)p
= µx1,...,xn

(Xj)P,

which completes the proof. �

5. Main result

In this section, we will prove Theorem 1. Then, we will present an application of our main
theorem to easy quantum groups Cs′(n), Cb′(n), As′(n), Ab′(n) , Ab#(n) and Bs′(n), Bb′(n).

5.1. Proof of the main theorem. The proof of free case is the most typical, we list it below:

Free case: In a W ∗-probability space (A, φ) such that φ is faithful. Let {E(n)}n∈N be a
sequence of orthogonal Hopf algebras such that As(n) ⊆ E(n) ⊆ Ao(n) for each n. Let (xi)i∈N
be a sequence of random variables which generate A. Suppose that the joint distribution of
(xi)i∈N is E(n) invariant for all n. By Proposition 3.11, (xi)i∈N are As(n) invariant for all n. By
Köstler and Speicher[9], there are a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving conditional
expectation E : A → B that (xi)i∈N are freely independent and identically distributed with
respect to E. It proves the statement 1 for free case. In addition, By Proposition 4.3 in [9]
and Definition 3.12, the coaction invariant condition for φ can be extended to the conditional
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expectation E, i.e.

E[b0xi1b1 · · · bk−1xikbk] ⊗ 1E(n) =

n
∑

j1,...,jk=1

E[b0xj1b1 · · · bk−1xjkbk] ⊗ uj1,i1 · · · ujk,ik

for i1, ..., ik ≤ n, where ui,j’s are generators of E(n).
2. Suppose that As(n) ⊆ E(n) ⊆ Ab(n) for all n and there exists a k such that E(k) 6= As(k).

Let {ui,j}i,j=1,...,k’s be generators of E(k). By proposition 3.5, ∃ i′ such that

k
∑

l=1

uml,i′ 6= 1,

for all m > 2.
Without loss of generality, we assume that i′ = 1. In order to finish the proof, we need to

show that κl(x1b1, ...., x1bl) = 0 for all l ≥ 3, where b1, ...., bl ∈ B. We prove this by induction
on l. First, we have that

E[x1b1 · · · x1bl] ⊗ 1E(n)

=
∑

i∈[k]l
E[xi1b1 · · · xilbl] ⊗ ui,1

=
∑

i∈[k]l

∑

π∈NC(l)

κπ(xi1b1, ..., xilbl) ⊗ ui,1

=
∑

π∈NCb(l)

∑

i∈[k]l
κπ(xi1b1, ..., xilbl) ⊗ ui,1 +

∑

π∈NC(l)\NCb(l)

∑

i∈[k]l
κπ(xi1b1, ..., xilbl) ⊗ ui,1

=
∑

π∈NCb(l)

∑

i∈[k]l

π≤ker i

κπ(xi1b1, ..., xilbl) ⊗ ui,1 +
∑

π∈NC(l)\NCb(l)

∑

i∈[k]l

π≤ker i

κπ(xi1b1, ..., xilbl) ⊗ ui,1

=
∑

π∈NCb(l)

∑

i∈[k]l

π≤ker i

κπ(x1b1, ..., x1bl) ⊗ ui,1 +
∑

π∈NC(l)\NCb(l)

∑

i∈[k]l

π≤ker i

κπ(x1b1, ..., x1bl) ⊗ ui,1

=
∑

π∈NCb(l)

κπ(x1b1, ..., x1bl) ⊗ 1E(n) +
∑

π∈NC(l)\NCb(l)

∑

i∈[k]l

π≤ker i

κπ(x1b1, ..., x1bl) ⊗ ui,1.

The first term of the last equality follows that E(n) is a quotient algebra of Ab(n). On the other
hand

E[x1b1, ..., x1bl]⊗1E(n) =
∑

π∈NCb(k)

κπ(x1b1, ..., x1bl)⊗1E(n)+
∑

π∈NC(l)\NCb(l)

κπ(x1b1, ..., x1bl)⊗1E(n).

Therefore,

(1)
∑

π∈NC(l)\NCb(l)

∑

i∈[k]l

π≤ker i

κπ(x1b1, ..., x1bl) ⊗ ui,1 =
∑

π∈NC(l)\NCb(l)

κπ(x1b1, ..., x1bl) ⊗ 1E(n)

When l = 3, we have NC(3) \NCb(3) = {13}, then
∑

i∈[n]k

π≤ker 13

κ13(x1b1, ..., x1b3) ⊗ ui,1 = κ13(x1b1, ..., x1b3) ⊗ 1E(n),

which is

κ13(x1b1, ..., x1bk) ⊗ (

k
∑

l=1

u3l,1 − 1E(n)) = 0.

Therefore, κ13(x1b1, ..., x1b3) = 0. Suppose κ1l(x1b1, ..., x1bl) = 0 for 3 ≤ l ≤ m, then for
π ∈ NC(m + 1), κπ(xi1b1, ..., x1bm+1) = 0 if π contains a block whose size is between 3 and m.
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Each partition π ∈ NC(m + 1) \NCb(m + 1) contains at least one block whose size is greater
than 2. Therefore, for π ∈ NC(m+ 1) \NCb(m+ 1), κπ(x1b1, ..., x1bk) = 0 if π 6= 1m+1. Hence,
equation 1 becomes

κ1m+1(x1b1, ..., x1bm+1) ⊗ (

k
∑

l=1

um+1
l,1 − 1E(n)) = 0

which implies

κ1m+1(x1b1, ..., x1bm+1) = 0,

for all b1, ..., bm+1 ∈ B. The proof is complete.
3. Suppose that As(n) ⊆ E(n) ⊆ Ah(n) for all n and there exists a k such that E(k) 6= As(k).

Let {ui,j}i,j=1,...,k’s be generators of E(k). By proposition 3.5, ∃ i′ such that

k
∑

l=1

uml,i′ 6= 1,

for all odd numbers m.
Without loss of generality, we assume that i′ = 1. We need to show that κk(x1b1, ...., x1bl) = 0

for all add numbers k where b1, ...., bl ∈ B. Agian, we prove this by induction on l.
We have that

E[x1b1 · · · x1bl] ⊗ 1E(n)

=
∑

π∈NCh(l)

∑

i∈[k]l

π≤ker i

κπ(x1b1, ..., x1bl) ⊗ ui,1 +
∑

π∈NC(l)\NCh(l)

∑

i∈[k]l

π≤ker i

κπ(x1b1, ..., x1bl) ⊗ ui,1

=
∑

π∈NCh(l)

κπ(x1b1, ..., x1bl) ⊗ 1E(n) +
∑

π∈NC(l)\NCh(l)

∑

i∈[k]l

π≤ker i

κπ(x1b1, ..., x1bl) ⊗ ui,1

The first term of the last equality follows that E(n) is a quotient algebra of Ah(n). On the other
hand, we have

E[x1b1, ..., x1bl]⊗1E(n) =
∑

π∈NCb(l)

κπ(x1b1, ..., x1bl)⊗1E(n)+
∑

π∈NC(l)\NCh(l)

κπ(x1b1, ..., x1bl)⊗1E(n).

Therefore,

(2)
∑

π∈NC(l)\NCb(l)

∑

i∈[k]l

π≤ker i

κπ(x1b1, ..., x1bl) ⊗ ui,1 =
∑

π∈NC(l)\NCb(l)

κπ(x1b1, ..., x1bl) ⊗ 1E(n)

When l = 1, we have NC(1) \NCh(1) = {11}, then

κ(1)(x1b1) ⊗ (
k

∑

l=1

ul,1 − 1E(n)) = 0.

Therefore, κ11(x1b1) = 0. Suppose κ1l(x1b1, ..., x1bl) = 0 for odd numbers l ≤ 2m, then for
π ∈ NC(2m + 1), κπ(xi1b1, ..., x1b2m+1) = 0 if π contains a block whose size is an odd number
less than 2m. Each partition π ∈ NC(2m + 1) \ NCb(2m + 1) contains at least one block
whose size is odd. Therefore, for π ∈ NC(2m + 1) \NCb(2m + 1), κπ(x1b1, ..., x1b2m+1) = 0 if
π 6= 12m+1. Hence, equation 2 becomes

κ12m+1(x1b1, ..., x1b2m+1) ⊗ (
k

∑

l=1

u2m+1
l,1 − 1E(n)) = 0
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which implies
κ1m+1(x1b1, ..., x1bm+1) = 0,

for all b1, ..., bm+1 ∈ B. The proof is complete.
4. If there exist k1, k2 such that E(k1) 6⊆ Ah(k1) and E(k2) 6⊆ Ab(k2), by Case 3 and 4, the

only non-vanishing cumulants are pair partition cumulants. The proof is done.
Classical Case: The proof is almost the same as free case, we just need to replace noncrossing

partitions by all partitions.
boolean Case: The proof is a little different. Some properties of boolean conditional ex-

pectation are discussed in [11], [7]. As it is shown in [11], for boolean de Finetti theorem, we
need to consider random variables in W ∗-probability space with a non-degenerated state (A, φ).
Assume that A is generated by a sequence of random variables (xi)i∈N. Let {E(n)}n∈N be a
sequence of orthogonal boolean quantum groups such that Bs(n) ⊆ E(n) ⊆ Bo(n) for each n.
If the joint distribution of (xi)i∈N is E(n) invariant, then the joint distribution of (xi)i∈N is
Bs(n) invariant for all n. By the main results in [11], there are a W ∗-subalgebra(not necessarily
contain the unit of A) B ⊆ A and a φ-preserving conditional expectation E : A → B such that
(xi)i∈N are boolean independent and identically distributed with respect to E. In this part of
proof, we will assume that B does not contain 1A. It should be pointed out that the case that B
contains the unit of A is always a unitalization of the case that B does not contain 1A. Under
our assumption, the tail algebra

B =

∞
⋂

n=1

W ∗{xk|k ≥ n},

where W ∗{xk|k ≥ n} is the WOT closure of the non-unital algebra generated by {xk|k ≥ n}.
We call B the non-unital tail algebra of {xi}i∈N. Unlike the proof of free and classical case, the
coaction invariant condition for φ can be extended to the conditional expectation E directly.
Actually, we have a stronger statement.

Proposition 5.1. Let (A, φ) be a W ∗-probability space and (xi)i∈N be an infinite sequence of
selfadjoint random variables which generate A as a von Neumann algebra and the unit of A is
contained in the WOT closure of the non-unital algebra generated by (xi)i∈N . Let E(n) be a
sequence of boolean orthogonal quantum semigroups such that Bs(n) ⊂ E(n) ⊂ Bo(n). If (xi)i∈N
is E(n) invariant for all n, then there exists a φ-preserving conditional expectation E : A → B,
where B is the non-unital tail algebra of {xi}i∈N, such that (xi)i∈N is boolean independent with
respect to E. Let An be the non-unital algebra generated by {xi}i∈N. We have that

E[a1ba2] = E[a1]bE[a2],

where a1, a2 ∈ An for some n and b ∈ B. Let {ui,j}i,j=1,...,n be generators of E(n). We will have
that

E[xi1 · · · xik ] ⊗P =
n
∑

j1,...,jk=1

E[xj1 · · · xjk ] ⊗ uj1,i1 · · · ujk,ikP

for i1, ..., ik ≤ n.

Proof. The existence of E is prove in [11]. We will just need to prove the last two equations.
Given a1, a2 ∈ An for some n and b ∈ B, by assumption, b is contained in W ∗-closure of the
non-unital algebra generated by {xi|i > n}. By Kaplansky theorem, ∃ a sequence of bounded
elements yi such that yi is contained in the non-unital algebra generated by {xi|i > n} such that
yi converges to b in strong operator topology. Therefore, by normality of E, we have

E[a1ba2] = lim
i→∞

E[a1yia2] = lim
i→∞

E[a1]E[yi]E[a2] = E[a1]bE[a2],
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where the second equality follows the fact that (xi)i∈N are boolean independent with respect to
E. The second equation can be checked pointwisely. Let a1, a2 ∈ Am for some m. In [11], we
showed that there exists a normal homomorphism α : A → A such that α(xi) = xi+1 for all
i ∈ N. By the proof of Lemma 6.7 in [11] and the assumption that {xi}i∈N is E(n)-invariant,
we have

φ(a1E[xi1 · · · xik ]a2) ⊗P

= lim
l→∞,l>m

φ(a1α
l(xi1 · · · xik)a2) ⊗P

= lim
l→∞,l>m

φ(αn(a1)xi1 · · · xikα
n(a2)) ⊗P

= lim
l→∞,l>m

(φ(αn(a1)
n
∑

j1,...,jk=1
xj1 · · · xjkα

n(a2)) ⊗ uj1,i1 · · · ujk,ikP

= lim
l→∞,l>m

φ(a1α
l(

n
∑

j1,...,jk=1
xj1 · · · xjk)a2) ⊗ uj1,i1 · · · ujk,ikP

=
n
∑

j1,...,jk=1
φ(a1E[xj1 · · · xjk ]a2) ⊗ uj1,i1 · · · ujk,ikP

Since a1, a2 are arbitrarily from the sense set
⋃

n→∞
An of A, the proof is done. �

Now, we turn to finish the proof of our main theorem for boolean case:
1. This is just the boolean de Finetti theorem in [11].

2. As the free case, we need to show that b
(l)
E (x1b1, ...., x1bl) = 0 for all l ≥ 3 where b1, ...., bl ∈

B ∪ {C1A}. By proposition 5.1, we have

E[xii1b1xi2 · · · bn−1xim]
= E[xii1 ]b1E[xi2 ] · · · bn−1E[xim ]

=
∑

π1∈I(k1)

b
(π1)
E (x

i
(1)
1
, ...x

i
(1)
k1

)b1
∑

π2∈I(k2)

b
(π2)
E (x

i
(2)
1
, ...x

i
(2)
k2

) · · · bn−1
∑

πm∈I(km)

b
(πm)
E (x

i
(m)
1

, ...x
i
(m)
km

)

=
∑

π∈I(k1)×I(k2)×···×I(km)

b
(π)
E (x

i
(1)
1
, ...x

i
(1)
k1

, b1xi(2)1
, ...x

i
(2)
k2

, · · · , bn−1xi(m)
1

, ...x
i
(m)
km

)

where il = (i
(l)
1 , ..., i

(l)
kl

) ∈ [n]kl for all l = 1, ...,m for some n and b1, ..., bm ∈ B. Therefore, to

finish the prove, we just need to show that b
(k)
E (x1, ...., x1) = 0 for all l ≥ 3. The rest of the poof

is almost the same as the free case:
Let {ui,j}i,j=1,...,k’s and P be generators of E(k). First, by Proposition 5.1, we have

E[x1 · · · x1] ⊗P

=
∑

i∈[k]l
E[xi] ⊗ ui,1P

=
∑

i∈[k]l

∑

π∈I(l)

b
(π)
E (xi) ⊗ ui,1

=
∑

π∈Ib(l)

∑

i∈[k]l
b
(π)
E (xi1 , ..., xil) ⊗ ui,1P +

∑

π∈I(l)\Ib(l)

∑

i∈[k]l
b
(π)
E (xi1 , ..., xil) ⊗ ui,1P

=
∑

π∈Ib(l)

∑

i∈[k]l

π≤ker i

b
(π)
E (xi1 , ..., xil) ⊗ ui,1P +

∑

π∈I(l)\Ib(l)

∑

i∈[k]l

π≤ker i

b
(π)
E (xi1 , ..., xil) ⊗ ui,1P

=
∑

π∈Ib(l)

∑

i∈[k]l

π≤ker i

b
(π)
E (x1, ..., x1) ⊗ ui,1P +

∑

π∈I(l)\Ib(l)

∑

i∈[k]l

π≤ker i

b
(π)
E (x1, ..., x1) ⊗ ui,1P

=
∑

π∈Ib(l)

b
(π)
E (x1b1, ..., x1bl) ⊗P +

∑

π∈I(l)\Ib(l)

∑

i∈[k]l

π≤ker i

b
(π)
E (x1, ..., x1) ⊗ ui,1P.
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The first term of the last equality follows that E(n) is a quotient algebra of Bb(n). On the other
hand

E[x1, ..., x1] ⊗P =
∑

π∈Ib(k)

b
(π)
E (x1, ..., x1) ⊗P +

∑

π∈I(l)\Ib(l)

b
(π)
E (x1, ..., x1) ⊗P.

Therefore,

(3)
∑

π∈I(l)\Ib(l)

∑

i∈[k]l

π≤ker i

b
(π)
E (x1, ..., x1) ⊗ ui,1P =

∑

π∈I(l)\Ib(l)

b
(π)
E (x1, ..., x1) ⊗P

By assumption, E(k) has a quotient algebra E′(k) that As(k) ( E′(k) ⊆ An(n). Let {u′i,j}
′s be

the generators of E′(k). Then, there exists a C∗-homomorphism Ψ : E(k) → E′(k) such that

Ψ(ui,j) = u′i,j for all i, j = 1, ..., k, and Ψ(P) = 1E′(k).

Without loss of generality, by proposition 3.5, we can assume that

k
∑

l=1

uml,1 6= 1,

for all m > 2. Let id⊗ Ψ acts on equation 4. Then, we get

(4)
∑

π∈I(l)\Ib(l)

∑

i∈[k]l

π≤ker i

b
(π)
E (x1, ..., x1) ⊗ u′i,1 =

∑

π∈I(l)\Ib(l)

b
(π)
E (x1, ..., x1) ⊗ 1E′(k).

When l = 3, we have I(3) \ Ib(3) = {13}, then
∑

i∈[n]k

π≤ker 13

b
(3)
E (x1, ..., x1) ⊗ u′i,1 = b

(3)
E (x1, ..., x1) ⊗ 1E′(k),

which is

κ13(x1, ..., x1) ⊗ (
k

∑

l=1

u′3l,1 − 1E′(k)) = 0.

Therefore, b
(3)
E (x1, ..., x1) = 0.

Suppose b
(l)
E (x1b1, ..., x1bl) = 0 for 3 ≤ l ≤ m. Then, for π ∈ I(m + 1), b

(π)
E (x1, ..., x1) = 0 if

π contains a block whose size is between 3 and m. Each partition π ∈ I(m + 1) \ Ib(m + 1)
contains at least one block whose size is greater than 2. Therefore, for π ∈ I(m+ 1) \ Ib(m+ 1),

b
(π)
E (x1, ..., x1) = 0 if π 6= 1m+1. Hence, equation 1 becomes

b
(m+1)
E (x1, ..., x1) ⊗ (

k
∑

l=1

u′m+1
l,1 − 1E′(k)) = 0

which implies

b
(m+1)
E (x1, ..., x1) = 0.

The proof is complete.
The same, compare to Case 3 and Case 4 in free case, by applying the method in boolean

Case 2, we have Case 3 and Case 4 for boolean independence are also true.
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5.2. Application. Now, we apply our main theorem to noncommutative distributional symme-
tries associated with As′ , Ab′ , Ab# , Cs′ , Cb′ , Bs′ , Bb′ . We have

Corollary 5.2. Let (A, φ) be a W ∗-probability space and (xi)i∈N be a sequence of random vari-
ables which generate A.

• Classical case:
Suppose that A is commutative and φ is faithful. We have

1. If the joint distribution of (xi)i∈N is Cs′(n) invariant for all n ∈ N, then there
are a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving conditional expectation E :
A → B (xi)i∈N such that (xi)i∈N are conditionally independent and have identically
symmetric distribution with respect to E.

2. If the joint distribution of (xi)i∈N is Cb′(n) invariant for all n ∈ N, then there are
a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving conditional expectation E : A → B
(xi)i∈N such that (xi)i∈N are conditionally independent and have centered Gaussian
distribution with respect to E.

• Free case:
Suppose φ is faithful. there are a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving condi-
tional expectation E : A → B such that

1. If the joint distribution of (xi)i∈N is As′(n) invariant for all n ∈ N, then there are
a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving conditional expectation E : A → B
such that (xi)i∈N are freely independent and have identically symmetric distribution
with respect to E.

2. If the joint distribution of (xi)i∈N is Ab′(n) invariant for all n ∈ N, then there are
a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving conditional expectation E : A → B
such that (xi)i∈N are freely independent and have centered semicircular distribution
with respect to E.

3. If the joint distribution of (xi)i∈N is Ab#(n) invariant for all n ∈ N , then there are
a W ∗-subalgebra 1 ⊆ B ⊆ A and a φ-preserving conditional expectation E : A → B
such that (xi)i∈N are freely independent and have centered semicircular distribution
with respect to E.

• boolean case:
If φ is non-degenerated. Let {E(n)}n∈N be a sequence of orthogonal boolean quantum
semigroups such that Bs(n) ⊆ E(n) ⊆ Bo(n) for each n. If the joint distribution of
(xi)i∈N is E(n) invariant, then there are a W ∗-subalgebra(not necessarily contain the
unit of A) B ⊆ A and a φ-preserving conditional expectation E : A → B such that

1. If the joint distribution of (xi)i∈N is Bs′(n) invariant for all n ∈ N, then there are
a W ∗-subalgebra(not necessarily contain the unit of A) B ⊆ A and a φ-preserving
conditional expectation E : A → B such that (xi)i∈N are boolean independent and
have identically symmetric distribution with respect to E.

2. If the joint distribution of (xi)i∈N is Bb′(n) invariant for all n ∈ N, then there are
a W ∗-subalgebra(not necessarily contain the unit of A) B ⊆ A and a φ-preserving
conditional expectation E : A → B such that (xi)i∈N are conditionally independent
and have centered Bernoulli distribution with respect to E.

Proof. According the diagrams in Section 3 and 4, we have the following:
1. Cs(n) ⊂ Cs′(n) ⊂ Cb(n) for all n, and Cs(n) 6= Cs′(n) for n > 3.
2. Cb′(n) 6⊂ Ch(n), Cb(n) for n > 3.
3. Asn ⊂ As′(n) ⊂ Ab(n) for all n, and As(n) 6= As′(n) for n > 3.
4. Ab′(n), Ab#(n) 6⊂ Ah(n), Ab(n) for n > 3.
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5. Bs(n) ⊂ Bs′(n) ⊂ Bb(n) for all n, and Bs(n) 6= Bs′(n) for n > 3. Moreover As′(n)
is a quotient algebra of Bs′(n)

6. Ab′ is a quotient algebra of Bb′(n) and Ab′(n) 6⊂ Ah(n), Ab(n) for n > 3.
By Theorem 1.1, we get our desired results.

�
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