
Probabilistic programs, computability, and de Finetti measures

Daniel M. Roy
Massachusetts Institute of Technology

droy@csail.mit.edu

Cameron E. Freer
Massachusetts Institute of Technology

freer@math.mit.edu

The complexity of probabilistic models, especially
those involving recursion, has far exceeded the rep-
resentational capacity of graphical models. Functional
programming languages with probabilistic choice op-
erators have recently been proposed as universal repre-
sentations for statistical modeling (e.g., IBAL [Pfe01],
λ◦ [PPT08], Church [GMR+08]). The conditional
independence structure of a probabilistic program is
not, in general, representable by a graphical model.
Rather, it is dynamic and is given by the random
control and data flow of the program. These func-
tional probabilistic languages are allied with imper-
ative probabilistic languages (e.g., Infer.NET) and a
similar tradition of augmenting logical representations
with probabilistic quantifiers (e.g., BLOG [MMR+05],
iBLOG [MMG08], PRISM [SK97], BLP [KR07], SLP
[Mug96], Markov Logic [RD06], Independent Choice
Logic [Poo08]).

In Church, a probabilistic dialect of Scheme/LISP,
probability distributions are represented as procedures
which generate samples. However, while sampling
defines the semantics, implementations need not be
sampling-based. Posterior analysis is implemented by
conditioning on a program’s output and querying the
values of variables internal to the program (e.g., a vari-
able which represents the mixture component for a
particular data point in a mixture model).

The MIT-Church implementation [GMR+08] provides
two general inference algorithms: an exact but arbi-
trarily slow rejection sampler for generating perfect
samples, and an approximate Metropolis-Hastings al-
gorithm which performs a random walk over the space
of possible computational histories of the constrained
program. In contrast, [Rad07] gives a deterministic
inference algorithm for probabilistic Scheme.

Although the semantics of probabilistic programs have
been studied extensively in theoretical computer sci-
ence in the context of randomized algorithms (e.g.,
[Koz81] and [JP89]), this application of probabilistic
programs to universal statistical modeling has a dif-

ferent character which has raised a number of interest-
ing theoretical questions (e.g., [RP02], [PPT08], and
[GMR+08]). Some preliminary connections between
exchangeability, nonparametrics, and computability
were described in [RMGT08]. Here we describe a re-
cent theoretical result [FR09] on computability, ex-
changeability and de Finetti measures, and highlight
its consequences for the semantics of probabilistic pro-
grams and for statistical inference.

1 The de Finetti Theorem

Let X = {Xi}i≥1 be an infinite sequence of real ran-
dom variables. An infinite sequence X is exchangeable
if, for any finite set {k1, . . . , kj} of distinct indices,
(Xk1 , . . . , Xkj

) d=(X1, . . . , Xj), where d= denotes equal-
ity in distribution. We denote the indicator function
of a set B by 1B .

Theorem (de Finetti [Kal05, Chap. 1.1]). Let
{Xi}i≥1 be a exchangeable sequence of real-valued ran-
dom variables. There is a random probability measure
ν on R such that {Xi}i≥1 is conditionally i.i.d. with
respect to ν. Moreover, ν is given, almost surely, by
ν(B) = limn→∞

1
n

∑n
i=1 1B(Xi), where B ranges over

the Borel subsets of R.

Following [Ald85], we call ν the directing random mea-
sure and call its distribution the de Finetti measure.

A Bayesian perspective suggests the following inter-
pretation: exchangeable sequences arise from indepen-
dent observations from a latent random distribution.
Posterior analysis requires a prior distribution on this
unknown distribution. This has been justified by the
existence of de Finetti measures. A natural question
to ask is whether computable exchangeable sequences
arise from independent observations from computable
random distributions. Using notions of computabil-
ity established in computable analysis [Sch07], it was
recently shown [FR09] that this is always the case.

As an example, consider the Beta(a, b)-Bernoulli pro-



cess and the Pólya urn scheme written in Church. We
will define the procedure sample-coin such that call-
ing sample-coin returns a new procedure which itself
returns random binary values. The probabilistic pro-
gram

(define my-coin (sample-coin))
(my-coin)
(my-coin)
(my-coin)
. . .

defines a random binary sequence. Consider the fol-
lowing two implementations of sample-coin (and re-
call that the (λ () . . . ) special form creates a proce-
dure of no arguments):

(i) (define (sample-coin)
(let ([coin-weight (beta a b)])
(λ () (bernoulli coin-weight)) ) )

(ii) (define (sample-coin)
(let ([heads a]

[total (+ a b)] )
(λ () (let ([x (bernoulli heads

total
)])

(set! heads (+ heads x))
(set! total (+ total 1))
x ) ) )

In case (i), evaluating (my-coin) returns a 1 with
probability coin-weight and a 0 otherwise, where the
shared coin-weight parameter is itself drawn from
a Beta(a, b) distribution on [0, 1]. Note that the se-
quence of values obtained by evaluating (my-coin) is
exchangeable but not i.i.d. (e.g., an initial sequence
of ten 1’s leads one to predict that the next draw is
more likely to be 1 than 0). However, conditioned on
the coin-weight (a hidden variable within the opaque
procedure my-coin) the sequence is i.i.d.

The code in (ii) implements the Pólya urn scheme (see
[dF75, Chap. 11.4]), and the sequence of return values
is exchangeable because x depends only on the number
of heads and tails, and not on the order of the previous
samples. Furthermore, the Pólya urn scheme is known
to produce the Beta-Bernoulli process.

Because the sequence induced by (ii) is exchangeable,
de Finetti’s theorem implies that it has the same dis-
tribution as the product of repeated draws from some
random distribution. In fact, by the above character-
ization of the Beta-Bernoulli process, (i) and (ii) are
equivalent as distributions over sequences.

However, there is an important difference between
these two implementations: (i) denotes the de Finetti
measure, while (ii) does not, as samples from it do not
denote fixed distributions.

The state of a procedure my-coin sampled using (ii)
changes after each iteration, as the sufficient statistics
are updated (using set!). Therefore, each element of
the sequence is generated from a different distribution.
Even though the sequence of calls to such a my-coin
has the same marginal distribution as those given by
repeated calls to a my-coin sampled using (i), a proce-
dure my-coin sampled using (ii) denotes a probability
kernel which depends on the state.

In contrast, a my-coin sampled using (i) does not
modify itself via mutation (set!); the value of
coin-weight does not change after it is randomly ini-
tialized and therefore my-coin denotes a fixed distri-
bution — a particular Bernoulli. Its marginal distri-
bution is a random Bernoulli, precisely the directing
random measure of the Beta-Bernoulli process. The
de Finetti measure is defined to be the distribution of
this directing random measure, and so (i) denotes the
de Finetti measure.

Mathematically, the relationship between (i) and (ii)
is that (ii) is obtained from (i) by marginalization (in
particular, integrating over the directing random mea-
sure). Thus, exchangeable mutation in probabilistic
programs arises from integrating out variables, thereby
inducing non-local dependencies.

2 Computable de Finetti Theorem

In the case of the exchangeable sequence given by the
(manifestly) computable Pólya urn scheme, the direct-
ing random measure ν is a random Bernoulli whose
parameter is drawn from a Beta distribution. The dis-
tribution of the latter is also computable. In general, it
can be shown that computable exchangeable sequences
always induce computable de Finetti measures. Fur-
thermore, given code generating an exchangeable se-
quence (e.g., given (ii)), we can automatically generate
code for the de Finetti measure (i.e., give a procedure
of the form (i) which does not use mutation):

Theorem (Computable de Finetti, [FR09]). Let X
be a real-valued exchangeable sequence and let µ be the
distribution of its directing random measure ν. Then
X is computable iff µ is computable. Moreover, µ is
uniformly computable in X, and conversely.

In many cases, exchangeable sequences are expressed
as samples from a sequence of conditional distribu-
tions P (Xk+1 | X1, . . . , Xk). The computable de
Finetti result implies that if the conditional distribu-
tions are computable (loosely, sampleable), then so is
the de Finetti measure. Like the Pólya urn exam-
ple, given a probabilistic program implementing the
Chinese restaurant process, the random directing mea-
sure given by Sethuraman’s [Set94] stick-breaking con-



struction of the Dirichlet process could be automati-
cally recovered. These different representations may
have vastly different time, space and entropy complex-
ity; mutation becomes especially relevant when imple-
menting parallel inference algorithms that span large
networks where communication costs are high.

The use of mutation also has important theoretical
consequences for the semantics of probabilistic lan-
guages. Procedures which do not use mutation denote
probabilistic functions (i.e., probability kernels) which
do not depend on the state. Procedures which use
mutation will, in general, denote probabilistic func-
tions which do depend on the state. However, if the
sequence of repeated calls to such a procedure is ex-
changeable, the classical de Finetti theorem implies
that repeated calls to the procedure have the same
distribution as that of some probabilistic function (not
depending on state), even though the denotational se-
mantics are different.

In particular, calls to a procedure which uses exchange-
able mutation are draws from some distribution. The
computable de Finetti theorem implies that this dis-
tribution is itself computable, and provides a means
of effectively recovering it. Thus one can move freely
between representations with and without mutation,
by transforming procedures which use exchangeable
mutation into their de Finetti representations, which
induce the same marginal distribution and do not use
mutation. An open problem is to determine the com-
plexity of this transformation between representations.

References

[Ald85] David J. Aldous, Exchangeability and related

topics, École d’été de probabilités de Saint-
Flour, XIII—1983, Lecture Notes in Math.,
vol. 1117, Springer, Berlin, 1985, pp. 1–198.

[dF75] Bruno de Finetti, Theory of probability. Vol.
2, John Wiley & Sons Ltd., London, 1975.

[FR09] Cameron E. Freer and Daniel M. Roy, Com-
putable exchangeable sequences have com-
putable de Finetti measures, Mathematical
Theory and Computational Practice: Fifth
Conference on Computability in Europe, CiE
2009 (Klaus Ambos-Spies, Benedikt Löwe,
and Wolfgang Merkle, eds.), Lecture Notes in
Computer Science, Springer, Berlin, 2009.

[GMR+08] Noah Goodman, Vikash Mansinghka,
Daniel M. Roy, Keith Bonawitz, and Joshua
Tenenbaum, Church: a language for genera-
tive models with non-parametric memoization
and approximate inference, Uncertainty in
Artificial Intelligence, 2008.

[JP89] C. Jones and G. Plotkin, A probabilistic pow-
erdomain of evaluations, Proc. of the Fourth
Ann. Symp. on Logic in Comp. Sci., IEEE
Press, 1989, pp. 186–195.

[Kal05] Olav Kallenberg, Probabilistic symmetries and
invariance principles, Springer, New York,
2005.

[Koz81] Dexter Kozen, Semantics of probabilistic pro-
grams, J. Comp. System Sci. 22 (1981), no. 3,
328–350.

[KR07] K. Kersting and L. De Raedt, Bayesian
logic programming: Theory and tool, An In-
troduction to Statistical Relational Learning
(L. Getoor and B. Taskar, eds.), MIT Press,
2007.

[MMG08] D. McAllester, B. Milch, and N. D. Good-
man, Random-world semantics and syntac-
tic independence for expressive languages,
Tech. Report MIT-CSAIL-TR-2008-025, Mas-
sachusetts Institute of Technology, 2008.

[MMR+05] B. Milch, B. Marthi, S. Russell, D. Sontag,
D.L. Ong, and A. Kolobov, BLOG: Probabilis-
tic models with unknown objects, Proc. of Int.
Joint Conf. on Artificial Intelligence, 2005.

[Mug96] S. Muggleton, Stochastic logic programs,
Advances in Inductive Logic Programming
(L. de Raedt, ed.), IOS Press, 1996, pp. 254–
264.

[Pfe01] Avi Pfeffer, IBAL: A probabilistic rational pro-
gramming language, Proc. of the Int. Joint
Conf. on Artificial Intelligence, 2001, pp. 733–
740.

[Poo08] David Poole, The independent choice logic
and beyond, Probabilistic Inductive Logic Pro-
gramming, 2008, pp. 222–243.

[PPT08] Sungwoo Park, Frank Pfenning, and Sebastian
Thrun, A probabilistic language based on sam-
pling functions, ACM Trans. Program. Lang.
Syst. 31 (2008), no. 1, 1–46.

[Rad07] Alexey Radul, Report on the probabilistic lan-
guage Scheme, Tech. Report MIT-CSAIL-TR-
2007-059, Massachusetts Institute of Technol-
ogy, 2007.

[RD06] M. Richardson and P. Domingos, Markov logic
networks, Machine Learning 62 (2006), no. 1,
107–136.

[RMGT08] Daniel M. Roy, Vikash Mansinghka, Noah
Goodman, and Josh Tenenbaum, A stochas-
tic programming perspective on nonparamet-
ric Bayes, Nonparametric Bayesian Workshop,
Int. Conf. on Machine Learning, 2008.

[RP02] Norman Ramsey and Avi Pfeffer, Stochastic
lambda calculus and monads of probability dis-
tributions, Proc. of the 29th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming
Languages (2002), 154–165.

[Sch07] Matthias Schröder, Admissible representations
of probability measures, Electron. Notes Theor.
Comput. Sci. 167 (2007), 61–78.

[Set94] J. Sethuraman, A Constructive definition of
Dirichlet priors, Statistica Sinica 4 (1994),
639–650.

[SK97] T. Sato and Y. Kameya, PRISM: A symbolic-
statistical modeling language, Proc. of Int.
Joint Conf. on Artificial Intelligence, 1997.


	The de Finetti Theorem
	Computable de Finetti Theorem

