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We propose and analyze a method to detect and characterize the drift of a nonstationary quantum
source. It generalizes a standard measurement for detecting phase diffusion of laser fields to quantum
systems of arbitrary Hilbert space dimension, qubits in particular. We distinguish diffusive and
systematic drifts, and examine how quickly one can determine that a source is drifting. We show
that for single-photon wavepackets our measurement is implemented by the Hong-Ou-Mandel effect.

Ever since its first experimental implementation in
1993 [1], quantum tomography (or, more generally,
quantum-state estimation [2]) has become an important
tool in the field of quantum information science (for re-
views, see [3, 4]). From the results of different measure-
ments on many instances of a quantum system, one infers
a density operator, ρ0 (plus “error bars”) that describes
best (in some more or less well-defined sense) the state
of each instance. One may well wonder why one assigns
just one density operator. A crucial role in this context
is played by the de Finetti theorem (for details, on both
the infinite and finite versions of the theorem, see [5, 6]):
if one has an extendible permutation-invariant sequence
of N quantum systems, then one can assign a quantum
state of the form

ρ(N) =

∫
dρP (ρ)ρ⊗N (1)

to the collection of N systems, with P (ρ) a probability
density over density operators. Quantum tomography
then succeeds in making the distribution P (ρ) more and
more narrow, sharply peaked around some ρ0. In fact, in
the limit of N →∞, one has P (ρ)→ δ(ρ− ρ0).

We are interested here in the case where the assump-
tion of permutation invariance does not hold, and where,
consequently, the de Finetti theorem does not apply. The
most relevant case is that of a (slowly) drifting source.
For example, it is well known that a laser displays phase
diffusion: when one considers two light pulses emitted by
the same laser with a short time delay τ between them,
there will be a (random) phase difference whose aver-
age magnitude increases with τ . Of course, even in this
case, one could average over all emitted light pulses, say
N instances, to arrive at a single average density ma-
trix. Indeed, if done correctly the averaging procedure
restores the permutation invariance, but (i) the average
density matrix depends on the number N , and (ii) the
averaging procedure throws away potentially useful infor-
mation. For example, if we are interested in the purity
of our quantum states, the single state estimate will be
too conservative.

In this paper we set ourselves the task of figuring out
how one could detect whether (and how) a source is drift-
ing. In principle, for detecting drift one could still use a
variant of quantum tomography: for example, we split

our N quantum systems into two groups of size N/2
each: the first half (chronologically) and the second half.
For each we estimate a single density matrix: and if
the difference between the two estimates is (not) statis-
tically significant then we conclude our source is (not)
likely drifting. This method works to some extent, but is
still subject to the same two objections mentioned above.
Moreover, it has been known for a few decades that for
the detection of given physical quantities (such as a par-
ticular matrix element of the density matrix) a targeted
method is always superior to performing full tomogra-
phy [7]. Therefore, we propose and analyze a different
method directly targeted at detecting drift. A difference
with the above-mentioned method [7] is that we consider
a quantity determined by pairs of density matrices.

Consider what one would measure to detect phase dif-
fusion of a (pulsed) laser in the special (but relevant) case
where one assumes the laser pulses can be described by
coherent states with some fixed (and known) amplitude
but a diffusing phase (relative to some phase standard).
One would take pairs of the output laser pulses, and split
them on a 50/50 beamsplitter in such a way that one par-
ticular output would be the vacuum if their phase differ-
ence, δφ, would be zero. That output’s intensity is then
I = |α|2|1 − exp(iδφ)|2/2, if |α| is the amplitude of the
laser pulses. Thus measuring this intensity determines
the phase difference directly.

Now how do we generalize this measurement to arbi-
trary quantum systems (in particular, qubits)? We first
note that the intensity I can also be written in terms
of the overlap between the two input states, call them
ρ = |α〉〈α| and ρ′ = |α′〉〈α′|, since exp(−2I) = Tr(ρρ′)
in this case. Thus, our choice of generalization will be to
measure the overlap between pairs of instances of quan-
tum systems from one and the same source. In other
words, we propose to measure the swap operator V̂ , de-
fined in terms of basis vectors {|i〉} and {|j〉} of the two
(isomorphic) Hilbert spaces of two instances numbered
m and n from our source by

V̂ =
∑
i

∑
j

|i〉m〈j| ⊗ |j〉n〈i|. (2)

The expectation value of V̂ equals the overlap

Tr(ρm ⊗ ρnV̂ ) = Tr(ρmρn). (3)

ar
X

iv
:1

10
2.

45
60

v2
  [

qu
an

t-
ph

] 
 2

4 
Fe

b 
20

11



2

(Note the left-hand side contains the tensor product of
two density operators, the right hand-side their matrix
product.) Each measurement of V̂ yields one of its two
eigenvalues, ±1, and so only after multiple measurements
will one obtain a statistical estimate of the overlap. [And,
as a bonus, if the two density matrices are identical,
then this measurement in fact measures the purity [8, 9],
P = Tr(ρ2

m).] By comparing the overlap between ad-
jacent copies, where |m − n| = 1 with the overlap be-
tween outputs that are farther apart, |m − n| > 1, we
obtain information about whether the source is drifting:
if the source is not drifting, the overlap is independent of
|m− n|.

In order to infer more detailed information about the
character of the drift or diffusion (beyond the mere
statement that the source is or is not stationary), we
need some simplifying assumptions about the sequence of
states (the space of all possible output states of N copies
is too large to be either measurable or tractable). Here
we make the following two assumptions (one of which has
been implicitly used already in the above description):
(a) the states are independent, (b) the drifting process is
Markovian, such that the overlap between two copies m
and n only depends on |m− n|. So we write the state of
N systems produced by our quantum source as a tensor
product [16]

ρ(N) = ρN ⊗ ρN−1 . . .⊗ ρ1. (4)

In this case, we get

Vnm ≡ Tr[ρn ⊗ ρmV̂ ] =
1

2
[Pn + Pm]− 1

2
Tr[∆2

mn], (5)

where Pk = Tr[(ρk)2] is the purity of system k, and ∆mn

is the difference between the two states m and n:

∆mn = ρm − ρn. (6)

As special cases of nonstationary sources we consider
both diffusion and systematic drift. Consider a (Marko-
vian) process where

ρn+1 = UrρnU
†
r . (7)

Diffusive drift occurs when Ur is a random unitary ma-
trix, picked from some distribution; a systematic drift
occurs when Ur is fixed. In either case, the purity of
ρn is independent of n: Pn = Pm ≡ P1. We can take
stochastic averages over the random distribution of uni-
taries, which we will indicate by a bar, to get

V nm = P1 −
1

2
Tr[∆2

nm]. (8)

In case the drift process is purely a systematic drift, each
unitary Ur is the same, and we get

Tr[∆2
nm] = |n−m|2D1 (9)

for some drift constant D1.

If the process that changes the states ρn is diffusive
(for example, the random distribution of Ur is a Gaus-
sian centered around the identity), then we get a linear
relationship between the overlap and the distance |n−m|,

Tr[∆2
nm] = |n−m|D2, (10)

for some diffusion constant D2 [17]. In this case, mea-
suring the swap operator between neighboring copies, for
which |n−m| = 1 and on copies with |n−m| = 2 gives
us both the purity P1 and the diffusion constant D2:

P1 = 2Tr[∆2
n,n+1]− Tr[∆2

n,n+2], (11)

D2 = Tr[∆2
n,n+2]− Tr[∆2

n,n+1]. (12)

(And similar relations hold when the drift is purely sys-
tematic.) One way to check which sort of drift pro-
cess one actually has, diffusive, systematic, or a com-
bination thereof, is to measure in addition the quantity

Tr[∆2
n,n+3], and then calculate the ratio

α ≡
Tr[∆2

n,n+2]− Tr[∆2
n,n+1]

Tr[∆2
n,n+3]− Tr[∆2

n,n+2]
. (13)

If the ratio is 1, one has a purely diffusive process, if
α = 3/5 one has a systematic drift, and in all cases in
between one has both diffusive and systematic drifts. To
see how the number α is determined when there is a com-
bination of systematic and diffusive drifts, let us consider
the simplest case of a qubit source. We model the drift
process with a unitary matrix Ur = exp(iδ~r · ~σ), with
δ � 1, ~σ a vector containing the three Pauli matrices,
and a random vector ~r that consists of both a diffusive
part and a systematic part,

~r = p~rconst + (1− p)~rdiffusive (14)

with a normally distributed random vector ~rdiffusive and
a constant (unit) vector ~rconst (and 0 ≤ p ≤ 1). In this
case α depends on p and on the ratio of the two constants
D1 and D2, with D1 = δ2Tr[~rconst · ~σ, ρ]2 and D2 =

δ2Tr[~rdiffusive · ~σ, ρ]2:

α =
−p2 + D1

D2
(−3p2 + 6p− 3)

−p2 + D1

D2
(−5p2 + 10p− 5)

. (15)

The next question we consider is, given a source of quan-
tum states, how quickly can we determine (by measuring
the swap operator) whether the source is drifting? Let us
first consider the case of pure diffusive drift. We could,
for example, measure the swap operator between states
that are 1 step and 2 steps apart, respectively, and see if
the two numbers are equal or not. Suppose we write the
overlaps as

Tr(ρnρn+1) = P1 −D2/2,

Tr(ρnρn+2) = P1 −D2. (16)

. . .
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Suppose we have N data sets of the measurements of
both Tr(ρnρn+1) and Tr(ρnρn+2). We get the measured
frequencies f±1 and f±2 , respectively, of the measurement
outcomes ±1 in the two cases. The average values are

V1 := Tr(ρnρn+1) = f+
1 − f

−
1 ,

V2 := Tr(ρnρn+2) = f+
2 − f

−
2 , (17)

and the standard error bars are (for large enough N)

∆V1 = 2

√
f+

1 f
−
1

N
,

∆V2 = 2

√
f+

2 f
−
2

N
. (18)

To decide that the source is drifting, the values of V1

and V2 should not overlap within their error bars. The
necessary condition for that is

1

2
∆V1 +

1

2
∆V2 < V1 − V2 = D2/2. (19)

From assumption (16) and Eqns. (17), we can write the
frequencies in terms of D1 and P1

f+
1 =

1

2
(1 + P1 −

D2

2
); f−1 =

1

2
(1− P1 +

D2

2
),

f+
2 =

1

2
(1 + P1 −D2); f−2 =

1

2
(1− P1 +D2), (20)

and using all this in Eq. (19) we can solve for the mini-
mum necessary number of measurements:

Nmin = [
1

D2
(

√
(1 + P1 −

D2

2
)(1− P1 +

D2

2
)

+
√

(1 + P1 −D2)(1− P1 +D2))]2. (21)

To detect a systematic drift, a similar calculation gives

Nmin = [
1

3D1
(

√
(1 + P1 −

D1

2
)(1− P1 +

D1

2
)

+
√

(1 + P1 − 2D1)(1− P1 + 2D1))]2. (22)

The number of measurements needed, for both diffusive
and systematic drifts, is depicted in Fig. 1 for various
values of P1.

In principle, one could detect a drifting source a lot
faster if one measured the swap operator on states that
are k > 2 steps apart (in addition to measuring states
1 step apart), simply because |Vk − V1| will be larger.
In an actual experiment, however, the larger the dis-
tance between two copies, the longer the earlier copy
would have to be stored in memory. We could model
the decoherence that the earlier copy undergoes as fol-
lows: assume that there is a typical decoherence time
scale τ , which, e.g., drives any state towards the totally
mixed state. That is, if we keep a system for time t,
then ρ→ (exp(−t/τ)ρ+ (1− exp(−t/τ)11/D, with D the
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FIG. 1: How many measurements do we need to figure out
that a source is drifting? Obviously, the larger the drift is
(as measured by the parameter D2 for diffusive drift or D1

for systematic drift), the fewer measurements we need. Top:
systematic drift, bottom: diffusive drift.

dimension of the Hilbert space of our quantum system.
Then assume that the time needed to produce one copy
is ετ with some (hopefully small) number ε. Then we can
write the overlap between states n and n+ k as

Pk = Tr(ρnρ̃n+k)

= e−kεTr(ρnρn+k) +
1

D
(1− e−kε)Tr(11ρn+k). (23)

The inferred overlap between copies n and n+ k follows
from the measured Pk by multiplying it with exp(kε)
(and subtracting a known quantity): so the error bar in
the overlap multiplies by the same number. This error
thus becomes substantial once kε becomes of order unity,
so that is where we would expect the method to use copies
a distance k apart to break down. In Fig.2 we plot the
number of measurements needed for various values of ε
as a function of k, and we can indeed see that for too
large values of k, the required number of measurements
increases exponentially with k. The optimal k, of course,
depends on the specific decoherence process, and also on
how fast the source is drifting, but seems to be around
kε ≈ 4 in our example.

Finally, we wish to note that in the case of two inde-
pendent single photons, when they are viewed as quan-
tum systems with an infinite-dimensional Hilbert space



4

0 5 10 15 20 25 30 35 40
0

50

100

150

200

k

Nmin

 

 

ε = 0.02

ε = 0.04

ε = 0.06

ε = 0.08

Minima

FIG. 2: This plot shows the minimal number of measure-
ments needed to detect drift, as a function of the (temporal)
distance between states measured, k, for various values of the
decoherence parameter ε, for P1 = 1, D = 2 and D2 = 0.01
(see main text for definitions). The minimum of each curve
determines the optimal distance k between states to be mea-
sured (in addition to distance-1 overlaps).

describing polarization, spectral, and transverse spatial
degrees of freedom, the swap operator can in fact be mea-
sured via the Hong-Ou-Mandel interference effect [10].
This can be shown as follows. We consider two sin-
gle photon wavepackets impinging on two different input
ports (denoted A and B) of a 50/50 beamsplitter. We
write the two (mixed) input states in terms of creation
and annihilation operators a† and a (for port A) and b†

and b (for port B) as:

ρA =
∑
kl pkla

†
k |0〉 〈0| al (24)

ρB =
∑
nm qnmb

†
n |0〉 〈0| bm, (25)

where the subscripts stand for the mode properties (po-
larization, frequency etc.) other than their propaga-
tion direction. The combined input state is then ρin =
ρA⊗ρB . This state gets transformed by the 50/50 beam-
splitter in the following way:

ρout =
∑
klnm

pklqnm

4 (c†k + id†k)(ic†n + d†n) (26)

|0〉 〈0| (cl − idl)(−icm + dm),

where c and d now denote operators of the two output
ports C and D. To get the probability Pcc of getting a

coincidence count, i.e., photo detections at both output
ports C and D, we take a partial trace:

Pcc =
∑
rs 〈1r|c 〈1s|d ρout |1r〉c |1s〉d (27)

=
∑
rs 〈0| crdsρoutc

†
rd
†
s |0〉

This simplifies to

Pcc =
1

2

∑
k

pkk
∑
n

qnn −
1

2

∑
kl

pklqlk. (28)

The first two sums are the traces of the density matrices
and therefore equal 1. It is easy to see that

Tr(ρAρB) =
∑
klnm

pklqnmδnlδmk =
∑
kl

pklqlk, (29)

so that we get the simple relation

2Pcc = 1− Tr(ρAρB). (30)

Thus, as announced, the HOM effect measures the over-
lap between two input states, and hence the swap oper-
ator. (And so, if the two single-photon input states are
identical, then the HOM interference measurement mea-
sures the purity of the input states. Note that this is
different from the measurement of single-photon (spec-
tral) purity implemented recently in Ref. [11], which also
makes use of the HOM effect, but with a known coherent-
state input in the other input port.) Of course, the HOM
effect has been measured many times in the context of
characterizing single-photon sources (see, e.g., [12, 13]),
but never, as far as we know, systematically on copies
more than the minimum distance apart. We also note
that for the polarization degree of single photons, the
overlap has been measured [14], following ideas from [8].

In conclusion, we proposed the measurement of the
swap operator as a means to detect the drifting of a
quantum source. This measurement complements quan-
tum tomography, which produces an estimate of a single
average density matrix, by partially characterizing how
this estimate would change over time, for instance, dis-
tinguishing between diffusive and systematic drifts. We
also analyzed how many measurements are needed to
determine that a source is drifting, including the influ-
ence of decoherence on the precise measurement strategy.
We showed the swap measurement on pairs of single-
photon wavepackets is implemented simply by the Hong-
Ou-Mandel effect.
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