A q-ANALOGUE OF DE FINETTI'S THEOREM

ALEXANDER GNEDIN AND GRIGORI OLSHANSKI

ABSTRACT. A q-analogue of de Finetti's theorem is obtained in terms of a boundary problem for the q-Pascal graph. For q a power of prime this leads to a characterisation of random spaces over the Galois field \mathbb{F}_q that are invariant under the natural action of the infinite group of invertible matrices with coefficients from \mathbb{F}_q .

1. INTRODUCTION

The infinite symmetric group \mathfrak{S}_{∞} consists of bijections $\{1, 2, \ldots\} \to \{1, 2, \ldots\}$ which move only finitely many integers. The group \mathfrak{S}_{∞} acts on the product space $\{0, 1\}^{\infty}$ by permutations of the coordinates. A random element of this space, that is a random infinite binary sequence, is called *exchangeable* if its probability law is invariant under the action of \mathfrak{S}_{∞} . De Finetti's theorem asserts that every exchangeable sequence can be generated in a unique way by the following two-step procedure: first choose at random the value of parameter p from some probability distribution on the unit interval [0, 1], then run an infinite Bernoulli process with probability p for 1's.

One approach to this classical result, as presented in Feller [3, Ch. VII, §4], is based on the following exciting connection with the Hausdorff moment problem. By exchangeability, the law of a random infinite binary sequence is determined by the array $(v_{n,k})$, where $v_{n,k}$ equals the probability of every initial sequence of length n with k 1's. The rule of addition of probabilities yields the backward recursion

$$v_{n,k} = v_{n+1,k} + v_{n+1,k+1}, \ 0 \le k \le n, \ n = 0, 1, \dots,$$
(1)

which readily implies that the array can be derived by iterated differencing of the sequence $(v_{n,0})_{n=0,1,\ldots}$. Specifically, setting

$$u_l^{(k)} = v_{l+k,k}, \qquad l = 0, 1, \dots, \quad k = 0, 1, \dots,$$
 (2)

and denoting by δ the difference operator acting on sequences $u = (u_l)_{l=0,1,\dots}$ as

$$(\partial u)_l = u_l - u_{l+1},$$

the recursion (1) can be written as

(1)

$$u^{(k)} = \delta u^{(k-1)}, \qquad k = 1, 2, \dots$$
 (3)

G. O. was supported by a grant from the Utrecht University, by the RFBR grant 08-01-00110, and by the project SFB 701 (Bielefeld University).

Since $v_{n,k} \ge 0$, the sequence $u^{(0)}$ must be completely monotone, that is, componentwise

$$\underbrace{\delta \circ \cdots \circ \delta}_{k} u^{(0)} \ge 0, \qquad k = 0, 1, \dots,$$

but then Hausdorff's theorem implies that there exists a representation

$$v_{n,k} = u_{n-k}^{(k)} = \int_{[0,1]} p^k (1-p)^{n-k} \mu(\mathrm{d}p)$$
(4)

with uniquely determined probability measure μ . De Finetti's theorem follows since $v_{n,k} = p^k (1-p)^{n-k}$ for the Bernoulli process with parameter p. See [1] for other proofs and extensive survey of generalisations of this result.

The present note is devoted to variations on the q-analogue of de Finetti's theorem, which was briefly outlined in Kerov [9] within the framework of the boundary problem for generalised Stirling triangles. The boundary problem for other weighted versions of the Pascal triangle was studied in [4], [6], and for more general graded graphs in [5], [9], [10].

Definition 1.1. Given q > 0, let us say that a random binary sequence $\varepsilon = (\varepsilon_1, \varepsilon_2, ...) \in \{0, 1\}^{\infty}$ is *q*-exchangeable if its probability law \mathbb{P} is \mathfrak{S}_{∞} -quasiinvariant with a specific cocycle, which is uniquely determined by the following condition: Denoting by $\mathbb{P}(\varepsilon_1, ..., \varepsilon_n)$ the probability of an initial sequence $(\varepsilon_1, ..., \varepsilon_n)$, we have for any i = 1, ..., n - 1

$$\mathbb{P}(\varepsilon_1,\ldots,\varepsilon_{i-1},\varepsilon_{i+1},\varepsilon_i,\varepsilon_{i+2},\ldots,\varepsilon_n)=q^{\varepsilon_i-\varepsilon_{i+1}}\mathbb{P}(\varepsilon_1,\ldots,\varepsilon_n)$$

In words: under an elementary transposition of the form $(\ldots, 1, 0, \ldots) \rightarrow (\ldots, 0, 1, \ldots)$, probability is multiplied by q.

Theorem 1.2. Assume 0 < q < 1. There is a bijective correspondence $\mathbb{P} \leftrightarrow \mu$ between the probability laws \mathbb{P} of infinite q-exchangeable binary sequences and the probability measures μ on the closed countable set

$$\Delta_q := \{1, q, q^2, \ldots\} \cup \{0\} \subset [0, 1].$$

More precisely, a q-exchangeable sequence can be generated in a unique way by first choosing at random a point $x \in \Delta_q$ distributed according to μ and then running a certain q-analogue of the Bernoulli process indexed by x. Each law \mathbb{P} is uniquely determined by the infinite triangular array

$$v_{n,k} := \mathbb{P}(\underbrace{1,\ldots,1}_{k},\underbrace{0,\ldots,0}_{n-k}), \qquad 0 \le k \le n < \infty, \tag{5}$$

which in turn is given by a q-version of formula (4), with Δ being replaced by Δ_q (Theorem 3.2). A similar result with switching the roles of 0's and 1's and replacing q by q^{-1} also holds for q > 1.

The rest of the paper is organized as follows. In Section 2 we introduce the q-Pascal graph and formulate the q-exchangeability in terms of certain Markov chains on this graph. In Section 3 we find a characteristic recursion for the numbers (5), which is a q-deformation of (1), and we prove the main result, equivalent to Theorem 1.2, using the

method of [10]. In Section 4 we discuss three examples: two q-analogues of the Bernoulli process and a q-analogue of Pólya's urn process. Finally, in Section 5, for q a power of a prime number, we provide an interpretation of the theorem in terms of random subspaces in an infinite-dimensional vector space over \mathbb{F}_q .

2. The q-Pascal graph

For q > 0, the q-Pascal graph is a *weighted* directed graph $\Gamma(q)$ on the infinite vertex set

$$\Gamma = \{ (l,k) : l, k = 0, 1, \ldots \}.$$

Each vertex (l, k) has two weighted outgoing edges $(l, k) \to (l+1, k)$ and $(l, k) \to (l, k+1)$ with weights 1 and q^l , respectively. The vertex set is divided into levels $\Gamma_n = \{(l, k) : l+k=n\}$, so $\Gamma = \bigcup_{n\geq 0} \Gamma_n$ with Γ_0 consisting of the sole root vertex (0, 0). For a path in Γ connecting two vertices $(l, k) \in \Gamma_{l+k}$ and $(\lambda, \varkappa) \in \Gamma_{\lambda+\varkappa}$ we define the weight to be the product of weights of edges along the path. For instance, the weight of $(2, 3) \to (2, 4) \to (3, 4) \to (3, 5)$ is $q^5 = q^2 \cdot 1 \cdot q^3$. Clearly, such a path exists if and only if $\lambda \geq l, \varkappa \geq k$.

We shall consider certain transient Markov chains $S = (S_n)$, with state-space Γ , which start at the root (0,0) and move along the directed edges, so that $S_n \in \Gamma_n$ for every $n = 0, 1, \ldots$ Thus, a trajectory of S is an infinite directed path in Γ started at the root.

Definition 2.1. Adopting the terminology introduced by Vershik and Kerov (see [9]), we say that a Markov chain S on $\Gamma(q)$ is *central* if the following condition is satisfied for each vertex $(n - k, k) \in \Gamma_n$ visited by S with positive probability: given $S_n = (n - k, k)$, the conditional probability that S follows each particular path connecting (0, 0) and (n - k, k) is proportional to the weight of the path.

Remark 2.2. If we only require the centrality condition to hold for all $(l, k) \in \Gamma_{\nu}$ for fixed ν , then we have it satisfied also for all (l, k) with $l + k \leq \nu$. From this it is easy to see that the centrality condition *implies* the Markov property of S in reversed time $n = \ldots, 1, 0$, hence also implies the Markov property in forward time $n = 0, 1, \ldots$

In the special case q = 1 Definition 2.1 means that in the Pascal graph $\Gamma(1)$ all paths with common endpoints are equally likely.

Recall a bijection between the infinite binary sequences $(\varepsilon_1, \varepsilon_2, ...)$ and infinite directed paths in Γ started at the root (0,0). Specifically, given a path, the *n*th digit ε_n is given the value 0 or 1 depending on whether *l* or *k* coordinate is increased by 1. Indentifying a path with a sequence $(n - K_n, K_n)$ (where $0 \le K_n \le n$), the correspondence can be written as

$$K_n = \sum_{j=1}^n \varepsilon_j , \ \varepsilon_n = K_n - K_{n-1}, \ n = 1, 2, \dots$$

Proposition 2.3. By virtue of the bijection between $\{0,1\}^{\infty}$ and the paths in Γ , each q-exchangeable sequence corresponds to a central Markov chain on $\Gamma(q)$, and vice versa.

Proof. This follows readily from Remark 2.2, Definitions 1.1 and 2.1 and the structure of $\Gamma(q)$.

We shall use the standard notation

$$[n] := 1 + q + \ldots + q^{n-1}, \ [n]! := [1] \cdot [2] \cdots [n], \ \begin{bmatrix} n \\ k \end{bmatrix} := \frac{[n]!}{[k]![n-k]!}$$

for q-integers, q-factorials and q-binomial coefficients, respectively, with the usual convention that $\begin{bmatrix} n \\ k \end{bmatrix} = 0$ for n < 0 or k < 0. Furthermore, we set

$$(x,q)_k := \prod_{i=0}^{k-1} (1 - xq^i), \ 1 \le k \le \infty,$$

with the infinite product $(k = \infty)$ considered for 0 < q < 1.

The following lemma justifies the name of the graph by relating it to the q-Pascal triangle of q-binomial coefficients.

Lemma 2.4. The sum of weights of all directed paths from the root (0,0) to a vertex (n-k,k), denoted $d_{n,k}$, is given by

$$d_{n,k} = \begin{bmatrix} n\\k \end{bmatrix}. \tag{6}$$

More generally, $d_{n,k}^{\nu,\varkappa}$, the sum of weights of all paths connecting two vertices (n-k,k) and $(\nu-\varkappa,\varkappa)$ in Γ is given by

$$d_{n,k}^{\nu,\varkappa} = q^{(\varkappa-k)(n-k)} \begin{bmatrix} \nu - n \\ \varkappa - k \end{bmatrix}.$$

Proof. Note that any path from (0,0) to (n-k,k) has the second component incrementing by 1 on some k edges $(l_i, i-1) \rightarrow (l_i, i)$, where i = 1, 2, ..., k and $0 \le l_1 \le \cdots \le l_k \le n-k$, thus the sum of weights is equal to

$$d_{n,k} = \sum_{0 \le l_1 \le \dots \le l_k \le n-k} q^{l_1 + \dots + l_k}.$$
(7)

This array satisfies the recursion

$$d_{n,k} = q^{n-k} d_{n-1,k-1} + d_{n-1,k}, \ 0 < k < n$$
(8)

with the boundary conditions $d_{n,0} = d_{n,n} = 1$. On the other hand, it is well known that the array of q-binomial coefficients also satisfies this recursion [8], hence by the uniqueness $d_{n,k}$ is the q-binomial coefficient. In the like way the sum of weights of paths from (n-k, k)to $(\nu - \varkappa, \varkappa)$ is

$$d_{n,k}^{\nu,\varkappa} = \sum_{n-k \le l_1 \le \dots \le l_{k'} \le \nu - \varkappa} q^{l_1 + \dots + l_{k'}}, \quad k' := \varkappa - k.$$

Comparing with (7) we see that this is equal to $q^{(n-k)k'} \begin{bmatrix} \nu - \varkappa \\ k' \end{bmatrix}$.

Remark 2.5. Changing (l, k) to (k, l) yields the *dual* q-Pascal graph $\Gamma^*(q)$, which has the same set of vertices and edges as $\Gamma(q)$, but different weights: the edge $(l, k) \rightarrow (l, k+1)$ has now weight 1, and the edge $(l, k) \rightarrow (l + 1, k)$ has weight q^k . The sum of weights of paths in Γ^* from (0,0) to (l, k) is again (6), which is related to another recursion for q-binomial coefficients, $d_{n,k} = d_{n-1,k-1} + q^k d_{n-1,k}$.

Consider the recursion

$$v_{n,k} = v_{n+1,k} + q^{n-k} v_{n+1,k+1}$$
, with $v_{0,0} = 1$, (9)

which is dual to (8), and denote by \mathcal{V} the set of nonnegative solutions to (9).

Proposition 2.6. Formula

$$\mathbb{P}\{S_n = (n-k,k)\} = d_{n,k}v_{n,k}, \qquad (n-k,k) \in \mathbb{I}$$

establishes a bijective correspondence $\mathbb{P} \leftrightarrow v$ between the probability laws of central Markov chains $S = (S_n)$ on $\Gamma(q)$ and solutions $v \in \mathcal{V}$ to recursion (9).

Proof. Let S be a central Markov chain on Γ with probability law \mathbb{P} . Observe that the property in Definition 2.1 means precisely that the one-step *backward* transition probabilities (that is, transition probabilities in the inverse time) are of the standard form

$$\mathbb{P}\{S_{n-1} = (n-1,k) \mid S_n = (n,k)\} = \frac{d_{n-1,k}}{d_{n,k}} = \frac{\lfloor n-k \rfloor}{\lfloor n \rfloor}$$
(10)

$$\mathbb{P}\{S_{n-1} = (n-1, k-1) \mid S_n = (n, k)\} = \frac{d_{n-1, k-1}q^{n-k}}{d_{n, k}} = q^{n-k} \frac{[k]}{[n]}$$
(11)

for every such S.

Introduce the notation

$$\tilde{v}_{n,k} := \mathbb{P}\{S_n = (n-k,k)\}, \qquad (n-k,k) \in \Gamma.$$
(12)

Consistency of the distributions of S_n 's amounts to the rule of total probability

$$\tilde{v}_{n,k} = \mathbb{P}\{S_n = (n,k) \mid S_{n+1} = (n+1,k)\}\tilde{v}_{n+1,k} + \mathbb{P}\{S_n = (n,k) \mid S_{n+1} = (n+1,k+1)\}\tilde{v}_{n+1,k+1}.$$
 (13)

Rewriting (13), using (10) and (11), and setting

$$v_{n,k} = d_{n,k}^{-1} \tilde{v}_{n,k} \tag{14}$$

we get (9), which means that $v \in \mathcal{V}$. Thus, we have constructed the correspondence $\mathbb{P} \mapsto v$.

Conversely, start with a solution $v \in \mathcal{V}$ and pass to $\tilde{v} = (\tilde{v}_{n,k})$ according to (14). For each *n* consider the measure on Γ_n with weights $\tilde{v}_{n,0}, \ldots, \tilde{v}_{n,n}$. Since the weight of the root is 1, it follows from (9) by induction in *n* that these are probability measures. Again

 \square

by (9), the marginal measures are consistent with the backward transition probabilities, hence determine the probability law of a central Markov chain on $\Gamma(q)$. Thus, we get the inverse correspondence $v \mapsto \mathbb{P}$.

By virtue of Propositions 2.3 and 2.6, the law of q-exchangeable infinite binary sequence is determined by some $v \in \mathcal{V}$, with the entries $v_{n,k}$ having the same meaning as in (5). In the sequel this law will be sometimes denoted \mathbb{P}_{v} .

3. The boundary problem

The set \mathcal{V} is a Choquet simplex, meaning a convex set which is compact in the product topology of the space of functions on Γ and has the property of uniqueness of the barycentric decomposition of each $v \in \mathcal{V}$ over the set of extreme elements of \mathcal{V} (see, e. g., [7, Proposition 10.21]).

The boundary problem for the q-Pascal graph amounts to describing extreme nonnegative solutions to the recursion (9). Each extreme solution $v \in \mathcal{V}$ corresponds to ergodic process (S_n) for which the tail sigma-algebra is trivial. In this context, the set of extremes is also known as the minimal boundary.

With each array $v \in \mathcal{V}$, $v = (v_{n,k})$, it is convenient to associate another array $\tilde{v} = (\tilde{v}_{n,k})$ related to v via (14). Clearly, the mapping $v \leftrightarrow \tilde{v}$ is an isomorphism of two Choquet simplexes \mathcal{V} and $\tilde{\mathcal{V}} = \{\tilde{v}\}$. Recall that the meaning of the quantities $\tilde{v}_{n,k}$ is explained in (12).

A common approach to the boundary problem calls for identifying a possibly larger *Martin boundary* (see [10], [6], [4] for applications of the method). To this end, we need to consider multistep backward transition probabilities, which by Lemma 6 are given by a q-analogue of the hypergeometric distribution

$$\tilde{v}_{n,k}(\nu,\varkappa) := \mathbb{P}\{S_n = (n-k,k) \mid S_\nu = (\nu-\varkappa,\varkappa)\}$$
$$= q^{(\varkappa-k)(n-k)} \begin{bmatrix} \nu - n \\ \varkappa - k \end{bmatrix} \begin{bmatrix} n \\ k \end{bmatrix} / \begin{bmatrix} \nu \\ \varkappa \end{bmatrix}, \ k = 0, \dots, n, \quad (15)$$

and to examine the limiting regimes for $\varkappa = \varkappa(\nu)$ as $\nu \to \infty$, under which the probabilities (15) converge for all fixed $(n - k, k) \in \Gamma$. If the limits exist, the limiting array

$$\tilde{v}_{n,k} := \lim_{(\nu,\varkappa)} \tilde{v}_{n,k}(\nu,\varkappa)$$

belongs necessarily to $\widetilde{\mathcal{V}}$.

Suppose 0 < q < 1 and introduce polynomials

$$\Phi_{n,k}(x) := q^{-k(n-k)} x^{n-k} (x, q^{-1})_k, \qquad \widetilde{\Phi}_{n,k} = d_{n,k} \Phi_{n,k}, \qquad 0 \le k \le n.$$
(16)

Obviously, the degree of $\Phi_{n,k}$ is n; we will consider the polynomial as a function on Δ_q . Observe also that $\Phi_{n,k}(x)$ vanishes at points $x = q^{\varkappa}$ with $\varkappa < k$, because of vanishing of $(x, q^{-1})_k$. **Lemma 3.1.** Suppose 0 < q < 1, and let in (15) the indices n and k remain fixed, while $\nu \to \infty$ and $\varkappa = \varkappa(\nu)$ varies in some way with ν . Then the limit of (15) is $\tilde{\Phi}_{n,k}(q^{\varkappa})$ if \varkappa is constant for large enough ν . If $\varkappa \to \infty$ then the limit is $\tilde{\Phi}_{n,k}(0) = \delta_{n,k}$.

Proof. Assume first $\varkappa \to \infty$ and show that the limit of (15) is δ_{nk} . Since the quantities $\tilde{v}_{n,k}(\nu,\varkappa)$, where $k = 0, \ldots, n$, form a probability distribution, it suffices to check that the limit exists and is equal to 1 for k = n. In this case the right-hand side of (15) becomes

$$\prod_{i=1}^{n} \frac{[\varkappa - n + i]}{[\nu - n + i]}$$

Because $\lim_{m\to\infty} [m] = 1/(1-q)$ for q < 1, this indeed converges to 1 provided that $\varkappa \to \infty$.

Now suppose \varkappa is fixed for all large enough ν . The right-hand side of (15) is 0 for $k > \varkappa$. For $k \leq \varkappa$ using $\lim_{m\to\infty} [m-j]!/[m]! = (1-q)^j$ we obtain

$$\begin{bmatrix} \nu - n \\ \varkappa - k \end{bmatrix} / \begin{bmatrix} \nu \\ \varkappa \end{bmatrix} = \frac{[\nu - n]!}{[\nu]!} \frac{[\nu - \varkappa]!}{[\nu - \varkappa - (n - k)]!} \frac{[\varkappa]!}{[\varkappa - k]!} \rightarrow \frac{(1 - q)^k [\varkappa]!}{[\varkappa - k]!} = \widetilde{\Phi}_{n,n}(q^{\varkappa}).$$
(17)

Part (i) of the next theorem appeared in [9, Chapter 1, Section 4, Corollary 6]. Kerov pointed out that the proof could be concluded from the Kerov-Vershik 'ring theorem' (see [5, Section 8.7]), but did not give details.

For μ a measure, we shall write $\mu(x)$ instead of $\mu(\{x\})$, meaning atomic mass at x.

Theorem 3.2. Assume 0 < q < 1.

(i) The formulas

$$\tilde{v}_{n,k} = \sum_{x \in \Delta_q} \tilde{\Phi}_{n,k}(x)\mu(x), \qquad v_{n,k} = \sum_{x \in \Delta_q} \Phi_{n,k}(x)\mu(x)$$

establish a linear homeomorphism between the set $\widetilde{\mathcal{V}}$ (respectively, \mathcal{V}) and the set of all probability measures μ on Δ_q .

(ii) Given $\tilde{v} \in \tilde{\mathcal{V}}$, the corresponding measure μ is determined by

$$\mu(q^{\varkappa}) = \lim_{\nu \to \infty} \tilde{v}_{\nu,\varkappa}, \qquad \varkappa = 0, 1, \dots; \qquad \mu(0) = 1 - \sum_{\varkappa \in \{0,1,\dots\}} \mu(q^{\varkappa}).$$

Proof. As in [10], the assertions (i) and (ii) are consequences of the following claims (a), (b) and (c).

(a) For each $\nu = 0, 1, 2, ...$, the vertex set Γ_{ν} is embedded into Δ_q via the map $(\nu, \varkappa) \mapsto q^{\varkappa}$. Observe that, as $\nu \to \infty$, the image of Γ_{ν} in Δ_q expands and in the limit exhausts the

whole set Δ_q , except point 0, which is a limit point. In this sense, Δ_q is approximated by the sets Γ_{ν} as $\nu \to \infty$.

(b) The multistep backward transition probabilities (15) converge to $\Phi_{n,k}(q^{\varkappa})$, for $0 \leq \varkappa \leq \infty$, in the regimes described by Lemma 3.1.

(c) The linear span of the functions $\widetilde{\Phi}_{n,k}(x)$, $(n-k,k) \in \Gamma$, is the space of all polynomials, so that it is dense in the Banach space $C(\Delta_q)$.

Note that part (ii) of the theorem can be rephrased as follows: given $\tilde{v} \in \tilde{\mathcal{V}}$, consider the probability distribution on Γ_n determined by $\tilde{v}_{n,\bullet}$ and take its pushforward under the embedding $\Gamma_{\nu} \hookrightarrow \Delta_q$. The resulting probability measure on Δ_q weakly converges to μ as $n \to \infty$.

Corollary 3.3. For 0 < q < 1 we have:

(i) The extreme elements of \mathcal{V} are parameterised by the points $x \in \Delta_q$ and have the form

$$v_{n,k} = \Phi_{n,k}(x), \qquad 0 \le k \le n. \tag{18}$$

(ii) The Martin boundary of the graph $\Gamma(q)$ coincides with its minimal boundary and can be identified with $\Delta_q \subset [0, 1]$ via the function $v \mapsto v_{1,0}$.

Proof. All the claims are immediate. We only comment on the fact the parameter $x \in \Delta_q$ is recovered as the value of $v_{1,0}$: this holds because $\Phi_{1,0}(x) = x$.

Letting $q \to 1$ we have a phase transition: the discrete boundary Δ_q becomes more and more dense and eventually fills the whole of [0, 1] at q = 1.

As is seen from (16), the polynomial $\Phi_{n,k}(x)$ can be viewed as a *q*-analogue of the polynomial $x^{n-k}(1-x)^k$, so that (18) is a *q*-analogue of (4). Keep in mind that $x = q^{\varkappa}$ is a counterpart of 1-p, the probability of $\varepsilon_1 = 0$. The following *q*-analogue of the Hausdorff problem of moments emerges. Introduce a modified difference operator acting on sequences $u = (u_l)_{l=0,1,\dots}$ as

$$(\delta_q u)_l = q^{-l}(u_l - u_{l+1}), \qquad l = 0, 1, \dots$$

Corollary 3.4. Assume 0 < q < 1. A real sequence $u = (u_l)_{l=0,1,\ldots}$ with $u_0 = 1$ is a moment sequence of a probability measure μ supported by $\Delta_q \subset [0,1]$ if and only if u is 'q-completely monotone' in the sense that for every $k = 0, 1, \ldots$ we have componentwise

$$\underbrace{\delta_q \circ \cdots \circ \delta_q}_k u \ge 0, \qquad k = 0, 1, \dots$$

Proof. Using the notation $v_{l+k,k} = u_l^{(k)}$ as in (2), we see that the recursion (9) is equivalent to $u^{(k)} = \delta_q u^{(k-1)}$, cf. (3). Then we use the fact that $\Phi_{n,0}(x) = x^n$ and repeat in the reverse order the argument of Section 1.

The case q > 1. This case can be readily reduced to the case with parameter $0 < \bar{q} < 1$, where $\bar{q} := q^{-1}$. It is convenient to adopt a more detailed notation $[n]_q$ for the q-integers.

Lemma 3.5. For every q > 0, $\bar{q} = q^{-1}$, the backward transition probabilities (10), (11) for the graph $\Gamma(q)$ and the dual graph $\Gamma^*(\bar{q})$ are the same.

Proof. Indeed, by virtue of (10), (11), this is reduced to the equality

$$\frac{[n-k]_q}{[n]_q} = \bar{q}^k \frac{[n-k]_{\bar{q}}}{[n]_{\bar{q}}} \,.$$

The lemma implies that the boundary problem for q > 1 can be treated by passing to $q^{-1} < 1$ and changing (l, k) to (k, l). In terms of the binary encoding of the path, this means switching 0's with 1's.

Kerov [9, Chapter 1, Section 2.2] gives more examples of 'similar' graphs, which have different edge weights but the same backward transition probabilities.

4. Examples

A q-analogue of the Bernoulli process. Our first example is a description of the extreme q-exchangeable infinite binary sequences.

With each infinite binary sequence we associate some T-sequence $(T_0, T_1, T_2, ...)$ of nonnegative integers, where T_j is the length of *j*th run of 0's. That is to say, T_0 is the number of 0's before the first 1, T_1 is the number of 0's between the first and second 1's, T_2 is the number of 0's between the second and third 1's, and so on. Clearly, this is a bijection, i.e. a binary sequence can be recovered from its *T*-sequence as

$$(\underbrace{0,\ldots,0}_{T_0},1,\underbrace{0,\ldots,0}_{T_1},1,\underbrace{0,\ldots,0}_{T_2},1,\ldots).$$

If q = 1, then the Bernoulli process with parameter p has a simple description in terms of the associated random T-sequence: all T_i are independent and have the same geometric distribution with parameter 1 - p.

Proposition 4.1. Assume 0 < q < 1. For $x \in \Delta_q$, let $v(x) = (v_{n,k}(x))$ be the extreme element of \mathcal{V} corresponding to x. Consider q-exchangeable infinite binary sequence $\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots)$ under the probability law $\mathbb{P}_{v(x)}$ and let (T_0, T_1, \ldots) be the associated random T-sequence.

(i) If $x = q^{\varkappa}$ with $\varkappa = 1, 2, ...$ then $T_0, ..., T_{\varkappa - 1}$ are independent, $T_{\varkappa} \equiv \infty$, and T_i has geometric distribution with parameter $q^{\varkappa - i}$ for $0 \le i \le \varkappa - 1$.

(ii) If x = 1 then $T_0 \equiv \infty$, which means that with probability one ε is the sequence $(0, 0, \ldots)$ of only 0's.

(iii) If x = 0 then $T_0 \equiv T_1 \equiv \cdots \equiv 0$, which means that with probability one ε is the sequence $(1, 1, \ldots)$ of only 1's.

Proof. Consider the central Markov chain $S = (S_n)$ corresponding to the extreme element $v(q^{\varkappa})$. Computing the forward transition probabilities, from (18) and (10), for $0 \le k \le \varkappa$ we have

$$\mathbb{P}\{S_{n+1} = (n+1-k,k) \mid S_n = (n-k,k)\} = \frac{(q^{n+1-k}-1)}{(q^n-1)} \frac{d_{n+1,k} \Phi_{n+1,k}(q^{\varkappa})}{d_{n,k} \Phi_{n,k}(q^{\varkappa})} = q^{\varkappa-k}.$$
 (19)

This implies (i) and (ii). In the limit case x = 0 corresponding to $\varkappa \to +\infty$, the above probability equals 0, which entails (iii).

The analogy with the Bernoulli process is evident from the above description of the binary sequence $\varepsilon(q^{\varkappa})$. Moreover, the Bernoulli process appears as a limit. Indeed, fix $p \in (0, 1)$ and suppose \varkappa varies with q, as $q \uparrow 1$, in such a way that

$$\varkappa \sim \frac{-\log(1-p)}{1-q}.$$

In this limiting regime, $q^{\varkappa - k} \to 1 - p$ for every k, hence $(T_0, T_1, ...)$ weakly converges to an infinite sequence of i.i.d. geometric variables with parameter 1-p, and the random binary sequence $\varepsilon(q^{\varkappa})$ converges in distribution to the Bernoulli process with the frequency of 0's equal to 1-p.

Another q-analogue of Bernoulli process. Following [9], another q-analogue of Bernoulli process is suggested by the q-binomial formula (see [8])

$$(-\theta,q)_n = \sum_{k=0}^n q^{k(k-1)/2} \begin{bmatrix} n\\ k \end{bmatrix} \theta^k$$

For $\theta \in [0,\infty]$ we define a probability law $\mathbb{P}_{w^{\theta}}$ for $S = (S_n)$ by setting

$$w_{n,k}^{\theta} := \frac{\theta^k q^{k(k-1)/2}}{(-\theta, q)_n}, \quad \mathbb{P}_{w^{\theta}} \{ S_n = (n-k, k) \} := d_{n,k} w_{n,k}^{\theta}, \quad (n,k) \in \Gamma.$$
(20)

Checking (9) is immediate. Computing forward transition probabilities,

$$\mathbb{P}_{w^{\theta}}\{S_{n+1} = (n+1-k,k) \mid S_n = (n-k,k)\} = 1/(1+\theta q^n),$$

shows that under $\mathbb{P}_{w^{\theta}}$ the process $S_n = (n - K_n, K_n)$ has independent inhomogeneous increments, with probability $\theta q^{n-1}/(1 + \theta q^{n-1})$ for increment $K_n - K_{n-1} = 1$. For q = 1 we are back to the ergodic Bernoulli process, but for 0 < q < 1 the process is not extreme. To obtain the barycentric decomposition of w^{θ} over extremes,

$$w^{\theta} = \sum_{0 \le \varkappa \le \infty} v^{\varkappa} \mu(q^{\varkappa}),$$

we can apply Theorem 3.2(ii) to compute from (20)

$$\mu(q^{\varkappa}) = \lim_{n \to \infty} \mathbb{P}_{w^{\theta}} \{ S_n = (n - \varkappa, \varkappa) \} = \frac{1}{(-\theta, q)_{\infty}} \frac{q^{\varkappa(\varkappa - 1)/2} \theta^{\varkappa}}{(1 - q)^{\varkappa} [\varkappa]!}$$

This measure μ may be viewed as a q-analogue of the Poisson distribution.

A q-analogue of Pólya's urn process. The conventional Pólya's urn process is described in [3, Section 7.4]. Here we provide its natural deformation.

Fix a, b > 0 and 0 < q < 1. Consider the Markov chain (S_n) on Γ with the forward transition probabilities from (n-k,k) to (n+1-k,k) and from (n-k,k) to (n-k,k+1) given by

$$\frac{[b+n-k]}{[a+b+n]} \quad \text{and} \quad \frac{[a+k]}{[a+b+n]} q^{n-k+b},$$

respectively. Then the distribution at time n is

$$\mathbb{P}\{S_n = (n-k,k)\} = \begin{bmatrix} n \\ k \end{bmatrix} q^{bk} \\
\times \frac{[a][a+1]\cdots[a+k-1][b][b+1]\cdots[b+n-k-1]}{[a+b][a+b+1]\cdots[a+b+n-1]}.$$
(21)

Checking consistency (9) is easy. The conventional Pólya's urn process appears in the limit $q \rightarrow 1$. The corresponding probability measure μ is computable from Theorem 3.2(ii) as

$$\lim_{n \to \infty} \mathbb{P}\{S_n = (n - \varkappa, \varkappa)\}\$$

For a = 1, the limit distribution of the coordinate \varkappa is geometric with parameter $1 - q^b$. For general a, b we obtain a measure on Δ_q

$$\mu(q^{\varkappa}) = \frac{(q^a, q)_{\varkappa}(q^b, q)_{\infty}}{(q, q)_{\varkappa}(q^{a+b}; q)_{\infty}} q^{\varkappa b}, \qquad q^{\varkappa} \in \Delta_q,$$

which may be viewed as a q-analogue of the beta distribution on [0, 1].

5. Grassmannians over a finite field

For q a power of a prime number, let \mathbb{F}_q be the Galois field with q elements. Define V_n to be the *n*-dimensional space of sequences (ξ_1, ξ_2, \ldots) with entries from \mathbb{F}_q , which satisfy $\xi_i = 0$ for i > n. The spaces $\{0\} = V_0 \subset V_1 \subset V_2 \subset \ldots$ comprise a complete flag, and the union $V_{\infty} := \bigcup_{n>0} V_n$ is a countable, infinite-dimensional space over \mathbb{F}_q .

By the Grassmannian $\operatorname{Gr}(V_{\infty})$ we mean the set of all vector subspaces $X \subseteq V_{\infty}$. Likewise, for $n \geq 0$ let $\operatorname{Gr}(V_n)$ be the set of all vector subspaces in V_n , with $\operatorname{Gr}(V_0)$ being a singleton. Consider the projection $\pi_{n+1,n} : \operatorname{Gr}(V_{n+1}) \to \operatorname{Gr}(V_n)$ which sends a subspace of V_{n+1} to its intersection with V_n .

Lemma 5.1. There is a canonical bijection $X \leftrightarrow (X_n)$ between the Grassmannian $\operatorname{Gr}(V_{\infty})$ and the set of sequences $(X_n \in \operatorname{Gr}(V_n), n \ge 0)$ satisfying the consistency condition $X_n = \pi_{n+1,n}(X_{n+1})$ for each n.

Proof. Indeed, the mapping $X \mapsto (X_n)$ is given by setting $X_n = X \cap V_n$ for each n, while the mapping $(X_n) \mapsto X$ is defined by $X = \bigcup X_n$.

The lemma shows that $\operatorname{Gr}(V_{\infty})$ can be identified with a projective limit of the finite sets $\operatorname{Gr}(V_n)$, the projections being the maps $\pi_{n+1,n}$. Using this identification we endow $\operatorname{Gr}(V_{\infty})$ with the corresponding topology, in which $\operatorname{Gr}(V_{\infty})$ becomes a totally disconnected compact space. For $X \in \operatorname{Gr}(V_{\infty})$, a fundamental system of its neighborhoods is comprised of the sets of the form $\{X' \in \operatorname{Gr}(V_{\infty}) : X'_n = X_n\}$, where $n = 1, 2, \ldots$.

Let $\mathscr{G}_n = GL(n, \mathbb{F}_q)$ be the group of invertible linear transformations of the space V_n , realised as the group of transformations of V_∞ which may only change the first n coordinates. We have then $\{e\} = \mathscr{G}_0 \subset \mathscr{G}_1 \subset \mathscr{G}_2 \subset \ldots$ and we define $\mathscr{G}_\infty := \cup \mathscr{G}_n$. The countable group \mathscr{G}_∞ consists of infinite invertible matrices (g_{ij}) , such that $g_{ij} = \delta_{ij}$ for large enough i + j. The group \mathscr{G}_∞ acts on V_∞ hence also acts on $Gr(V_\infty)$.

A probability distribution on $\operatorname{Gr}(V_{\infty})$ defines a random subspace of V_{∞} . We look at random subspaces of V_{∞} whose distribution is invariant under the action of \mathscr{G}_{∞} . Observe that the action of \mathscr{G}_n splits $\operatorname{Gr}(V_n)$ into orbits

$$G(n,k) = \{ X \in \operatorname{Gr}(V_n), \dim X = k \}, \ 0 \le k \le n,$$

where $\#G(n,k) = d_{n,k}$ is the number of k-dimensional subspaces of V_n . Therefore, a probability distribution on $Gr(V_{\infty})$ is \mathscr{G}_{∞} -invariant if and only if the conditional distribution on each G(n,k) is uniform.

It must be clear that this setting of 'q-exchangeability' of linear spaces is analogous to the framework of de Finetti's theorem: exchangeability of a random binary sequence means that the conditional measure is uniform on sequences of length n with k 1's. See [1], [2] for more on symmetries and sufficiency.

Lemma 5.2. Formula

$$\tilde{v}_{n,k} = P\{X \in \operatorname{Gr}(V_{\infty}) : X \cap V_n \in G(n,k)\}, \quad (n,k) \in \Gamma$$

establishes a linear homeomorphism between $\widetilde{\mathcal{V}}$ and \mathscr{G}_{∞} -invariant probability measures on the Grassmannian $\operatorname{Gr}(V_{\infty})$.

Proof. We first spell out more carefully the remark before the lemma. Consider projections

$$\pi_{\infty,n}$$
: $\operatorname{Gr}(V_{\infty}) \to \operatorname{Gr}(V_n), \qquad X \mapsto X \cap V_n, \quad X \in \operatorname{Gr}(V_{\infty}), \quad n = 1, 2, \dots$

If P is a Borel probability measure on the space $\operatorname{Gr}(V_{\infty})$, then, for any n, the pushforward $P_n := \pi_{\infty,n}(P)$ is a probability measure on $\operatorname{Gr}(V_n)$, and the measures P_n are consistent with respect to the projections $\pi_{n+1,n}$, that is,

$$P_n = \pi_{n+1,n}(P_{n+1}), \qquad n = 0, 1, 2, \dots$$

Conversely, if a sequence (P_n) of probability measures is consistent, then it determines a probability measure P on $\operatorname{Gr}(V_{\infty})$. Moreover, P is \mathscr{G}_{∞} -invariant if and only if each P_n is \mathscr{G}_n -invariant. Next, observe that if P_n is a \mathscr{G}_n -invariant probability measure, then it assigns the same weight to each k-dimensional space $X_n \in G(n,k)$; let us denote this weight by $v_{n,k}$.

Fix $X_n \in G(n, k)$. We claim that there are precisely $q^{n-k}+1$ subspaces $X_{n+1} \in Gr(V_{n+1})$ such that $X_{n+1} \cap V_n = X_n$: one subspace from G(n+1, k) and q^{n-k} subspaces from G(n+1, k+1). Indeed, dim X_{n+1} equals either k or k+1. In the former case $X_{n+1} = X_n$, while in the latter case X_{n+1} is spanned by X_n and a nonzero vector from $V_{n+1} \setminus V_n$. Such a vector is defined uniquely up to a scalar multiple and addition of an arbitrary vector from X_n . Therefore, the number of options is equal to the number of lines in V_{n+1}/X_n not contained in V_n/X_n , which equals

$$\frac{q^{n+1-k}-1}{q-1} - \frac{q^{n-k}-1}{q-1} = q^{n-k}.$$

Now, let P be a \mathscr{G}_{∞} -invariant probability measure on $\operatorname{Gr}(V_{\infty})$, with projections (P_n) specified by the corresponding array of weights $v = (v_{n,k})$. Then the relations $P_n = \pi_{n+1,n}(P_{n+1})$ together with the dimension computation imply that v satisfies (9).

Conversely, given $v \in \mathcal{V}$, we can construct a sequence (P_n) of measures such that P_n lives on $\operatorname{Gr}(V_n)$, is invariant under \mathscr{G}_n and agrees with P_{n+1} under $\pi_{n+1,n}$. Since P_0 , which lives on a singleton, is obviously a probability measure, we obtain by induction that all P_n are probability measures. Taking their projective limit we get a \mathscr{G}_{∞} -invariant probability measure P on $\operatorname{Gr}(V_{\infty})$.

Rephrasing Theorem 3.2 we have from the lemma

Corollary 5.3. The ergodic \mathscr{G}_{∞} -invariant probability measures on $\operatorname{Gr}(V_{\infty})$ are parameterised by $\varkappa \in \{0, 1, \ldots, \infty\}$. For $\varkappa = 0$ the measure is the Dirac mass at V_{∞} , for $\varkappa = \infty$ it is the Dirac mass at V_0 , and for $0 < \varkappa < \infty$ the measure is supported by the set of subspaces of V_{∞} of codimension \varkappa .

The following random algorithm describes explicitly the dynamics of the growing space $X_n \in \operatorname{Gr}(V_n)$ as n varies, under the ergodic measure with parameter \varkappa . Recall the notation $\bar{q} = q^{-1}$. Start with $X_0 = V_0$. With probability \bar{q}^{\varkappa} choose $X_1 = V_1$, and with probability $1 - \bar{q}^{\varkappa}$ choose $X_1 = X_0$. Suppose $X_n \subseteq V_n$ has been constructed and has dimension n - k with $k \leq \varkappa$. Then let $X_{n+1} = X_n$ with probability $1 - \bar{q}^{\varkappa - k}$, and with probability $\bar{q}^{\varkappa - k}$ choose uniformly at random a nonzero vector $\xi \in V_{n+1} \setminus V_n$ and let X_{n+1} be the linear span of X_n and ξ .

Duality. We finish with a dual version of our construction. Let V^{∞} denote the set of all sequences $\eta = (\eta_1, \eta_2, ...)$ with entries from \mathbb{F}_q . This is again a vector space over \mathbb{F}_q , strictly larger than V_{∞} since we do not require η to have finitely many nonzero entries. That is to say, V^{∞} is just the infinite product space $(\mathbb{F}_q)^{\infty}$, which we endow with the product topology. Let $\operatorname{Gr}(V^{\infty})$ denote the set of all *closed* subspaces $Y \subseteq V^{\infty}$. A dual version of Lemma 5.1 says that such subspaces Y are in a bijective correspondence with the sequences $(Y_n \in \operatorname{Gr}(V_n), n \ge 0)$ such that $Y_n = \pi'_{n+1,n}(Y_{n+1})$, where $\pi'_{n+1,n}$ is induced by the projection map $V_{n+1} \to V_n$ which sets the (n+1)th coordinate of a vector $\xi \in V_{n+1}$ equal to 0. The branching of G(n, k)'s under these projections corresponds to the dual q-Pascal graph.

Lemma 5.4. The operation of passing to the orthogonal complement with respect to the bilinear form

$$\langle \xi, \eta \rangle := \sum_{i=1}^{\infty} \xi_i \eta_i, \qquad \xi \in V_{\infty}, \quad \eta \in V^{\infty},$$

is a bijection $\operatorname{Gr}(V_{\infty}) \leftrightarrow \operatorname{Gr}(V^{\infty})$.

Proof. First of all, note that the bilinear form is well defined, because the coordinates ξ_i of $\xi \in V_{\infty}$ vanish for *i* large enough. This form determines a bilinear pairing $V_{\infty} \times V^{\infty} \to \mathbb{F}_q$. We claim that it brings the spaces V_{∞} and V^{∞} into duality, where V^{∞} is viewed as a vector space with nontrivial topology, and the topology on V_{∞} is discrete.

Indeed, it is evident that the pairing is nondegenerate and that any linear functional on V_{∞} is given by a vector of V^{∞} . A minor reflection also shows that, conversely, any *continuous* linear functional on V^{∞} is given by a vector from V_{∞} . Thus, the spaces V_{∞} and V^{∞} are indeed dual to one another. They are also dual as commutative locally compact topological groups: one is discrete and the other is compact.

Using the duality, it is readily checked that if X is an arbitrary subspace in V_{∞} , then its orthogonal complement X^{\perp} is a closed subspace in V^{∞} , whose orthogonal complement $(X^{\perp})^{\perp}$ coincides with X. Likewise, starting with a closed subspace $Y \subseteq V^{\infty}$, we have $Y^{\perp} \subseteq V_{\infty}$ and $(Y^{\perp})^{\perp} = Y$. Thus, the operation of taking the orthogonal complement is a bijection.

The group \mathscr{G}_{∞} acts on both V_{∞} and V^{∞} and preserves the pairing between these vector spaces. Under the identification $\operatorname{Gr}(V^{\infty}) = \operatorname{Gr}(V_{\infty})$, the group \mathscr{G}_{∞} acts by homeomorphisms on this compact space. In the dual picture, the ergodic measures with $\varkappa < \infty$ live on the set of \varkappa -dimensional subspaces of V^{∞} . The case $\varkappa = \infty$ corresponds then to the zero subspace in V_{∞} (or the full space V^{∞}). There is a simple explanation why we have to fix codimension in the V_{∞} -picture and dimension in the V^{∞} -picture, and not vice versa. Namely, the subspaces in V_{∞} of fixed nonzero finite dimension form a countable set, which is a single \mathscr{G}_{∞} -orbit, and such a \mathscr{G}_{∞} -space cannot carry a finite invariant measure.

References

- D. J. Aldous (1985), Exchangeability and related topics. In: École d'été de probabilités de Saint-Flour, XIII—1983, Lecture Notes in Math., 1117, 1–198. Springer, Berlin.
- [2] P. Diaconis and D. Freedman (1984), Partial exchangeability and sufficiency. In: J. K. Ghosh and J. Roy (Eds). Statistics: Applications and New Directions; Proceedings of the Indian Statistical Institute Golden Jubilee International Conference; Sankhya A. Indian Statistical Institute, 205–236.
- [3] W. Feller (1971), An Introduction to Probability Theory and its Applications, Vol. II, Wiley, NY.

- [4] A. Gnedin and G. Olshanski (2006), The boundary of the Eulerian number triangle. Moscow Mathematical Journal 6, 461–465.
- [5] A. Gnedin and G. Olshanski (2006) Coherent random permutations with descent statistic and the boundary problem for the graph of zigzag diagrams. Intern. Math. Res. Notices, Article ID 51968, 1–39.
- [6] A. Gnedin and J. Pitman (2006), Exchangeable Gibbs partitions and Stirling triangles. Journal of Mathematical Sciences, 138, 5674–5685.
- [7] K. R. Goodearl (1986), *Partially ordered abelian groups with interpolation*. Mathematical Surveys and Monographs **20**, American Mathematical Society, Providence, R.I., 1986, xxii + 336 pp.
- [8] V. Kac and P. Cheung (2001), Quantum Calculus, Springer.
- [9] S. Kerov (2003), Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Amer. Math. Soc., Providence, RI.
- [10] S. Kerov, A. Okounkov, and G. Olshanski (1998), The boundary of Young graph with Jack edge multiplicities. Intern. Math. Res. Notices, no. 4, 173–199.

DEPARTMENT OF MATHEMATICS, UTRECHT UNIVERSITY, THE NETHERLANDS *E-mail address*: A.V.Gnedin@uu.nl

INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS, MOSCOW, AND INDEPENDENT UNIVER-SITY OF MOSCOW, RUSSIA

E-mail address: olsh2007@gmail.com