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ON LEHNER’S ‘FREE’ NONCOMMUTATIVE

ANALOGUE OF DE FINETTI’S THEOREM

CLAUS KÖSTLER

Abstract. Inspired by Lehner’s results on exchangeability systems in [Leh06]
we define ‘weak conditional freeness’ and ‘conditional freeness’ for stationary

processes in an operator algebraic framework of noncommutative probability.
We show that these two properties are equivalent and thus the process embeds
into a von Neumann algebraic amalgamated free product over the fixed point
algebra of the stationary process.

Recently Lehner introduced ‘weak freeness’ for exchangeability systems within
a cumulant approach to *-algebraic noncommutative probability. A main result
in [Leh06] is that an exchangeability system with weak freeness and certain other
properties embeds into an amalgamated free product analogous to the classical De
Finetti theorem. Here we investigate Lehner’s approach from an operator algebraic
point of view which is motivated by recent results on a noncommutative version of
De Finetti’s theorem [Kös08] and a certain ‘braided’ extension of it [GK08]. For the
classical De Finetti theorem, we refer the reader to Kallenberg’s recent monograph
[Kal05] on probabilistic symmetries and invariance principles.

Since tail events in probability theory lead to conditioning which goes beyond
amalgamation, we define ‘conditional freeness’ and ‘weak conditional freeness’ as
a slight generalization of Voiculescu’s ‘amalgamated freeness’ [Voi85, VDN92] and
Lehner’s ‘weak freeness’ [Leh06], respectively. We investigate them for station-
ary processes in an operator algebraic setting of noncommutative probability (see
[Kös08, GK08] for details). Our main results are, re-formulated in terms of infinite
minimal random sequences with stationarity:

⋄ ‘Weak conditional freeness’ and ‘conditional freeness’ are equivalent; and
the conditioning is with respect to the tail algebra of the random sequence
(see Theorem 2.1).

⋄ ‘Weak freeness’ and ‘amalgamated freeness’ are equivalent under a certain
condition; and the amalgamation is with respect to the tail algebra of the
random sequence (see Theorem 3.6).

⋄ Each of these four variations of Voiculescu’s central notion of freeness
implies that the random sequence canonically embeds into a certain von
Neumann algebra amalgamated free product and that it enjoys exchange-
ability (see Theorem 2.1, Theorem 3.6 and their corollaries).

Our results hint at that, dropping the assumption of stationarity, a certain asymp-
totic version of weak conditional freeness seems perhaps already to be equivalent
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2 C. KÖSTLER

to conditional freeness; which would of course imply the distributional symmetry
of exchangeability.

We summarize the content of this paper. Section 1 introduces ‘conditional free-
ness’ and ‘weak conditional freeness’ for stationary processes; and it provides a fixed
point characterization theorem from [Kös08]. Section 2 contains our first main re-
sult, Theorem 2.1 on the equivalence of weak conditional freeness and conditional
freeness. This results rests on an application of the mean ergodic theorem, also
provided there. Finally, we relate our results in Section 3 to those obtained for
exchangeability systems in [Leh06]. We will see that, up to regularity and modular
conditions, an exangeability system yields a stationary process in our sense. This
observation is the starting point for Theorem 3.6, our second main result on the
equivalence of amalgamated freeness and weak freeness.

1. Preliminaries

We are interested in a probability space (M, ϕ) consisting of a von Neumann
algebra M with separable predual and a faithful normal state ϕ on M. A von
Neumann subalgebra M0 ⊂ M is said to be ϕ-conditioned if the ϕ-preserving
conditional expectation E0 : M → M0 exists. We say that an endomorphism
α : M → M is ϕ-conditioned if α is unital, ϕ-preserving and commutes with the
modular automorphism group associated to (M, ϕ). Throughout we will work in
the GNS representation of (M, ϕ). Finally,

∨
i∈I Ai denotes the von Neumann

algebra generated by the family (Ai)i∈I ⊂ M.

Definition 1.1. A stationary process M ≡ (M, ϕ, α;M0) consists of a probability
space (M, ϕ) which is equipped with a ϕ-conditioned endomorphism α and a ϕ-
conditioned von Neumann subalgebra M0 ⊂ M. The canonical filtration F(M ) of
M is the family (MI)I⊂N0 of subalgebras MI :=

∨
i∈I αi(M0). We say that M is

minimal if M = MN0 .

Notation 1.2. The fixed point algebra of α is denoted by Mα and E is the ϕ-
preserving conditional expectation from M onto Mα. The tail algebra of M is
Mtail :=

⋂
n∈N0

αn(M).

Remark 1.3. The ϕ-conditioning of M0 and α imply that F(M ) is family of
ϕ-conditioned von Neumann subalgebras. In particular, the ϕ-conditioning of α

ensures the existence of the ϕ-preserving conditional expectation E from M onto
Mα. We will make use of this in the proof of Theorem 2.1.

Motivated by Lehner’s notion of ‘weak freeness’ and the author’s work on a
noncommutative extended De Finetti theorem [Kös08, GK08], we introduce ‘weak
conditional freeness’ and ‘conditional freeness’.

Definition 1.4. Suppose M is a minimal stationary process.

(i) M and its filtration F(M ) satisfy conditional freeness if, for every n ∈ N

and n-tuple i : {1, 2, . . . , n} → N0,

E(x1x2x3 · · ·xn) = 0

whenever

xj ∈ (Mα ∨MIi(j)) ∩ KerE

with mutually disjoint subsets {Ii | i ∈ Ran i} and i(1) 6= i(2) 6= · · · 6= i(n).
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(ii) M and its filtration F(M ) satisfy weak conditional freeness if, for every
n ∈ N and n-tuple i : {1, 2, . . . , n} → N0,

ϕ(x1x2x3 · · ·xn) = 0

whenever

xj ∈ Mα ∨MIi(j) and lim
N→∞

1

N

N−1∑

k=0

ϕ
(
x∗

jα
k(xj)

)
= 0

with mutually disjoint subsets {Ii | i ∈ Ran i} and i(1) 6= i(2) 6= · · · 6= i(n).

Remark 1.5. Conditional freeness of F(M ) is equivalent to Voiculescu’s amalga-
mated freeness of the family

(
αi(M0 ∨ Mα)

)
i≥0

in (M, E). Thus it generalizes

amalgamated freeness of two operators [VDN92, Definition 3.8.2] to amalgamated
freeness of two families of operators. On the other hand, conditional freeness is
a special case of conditional independence in [Kös08]. Note that the requirement
Mα ⊂ M0 is very restrictive since MI ∩Mα may be trivial for any finite set I.
Such a situation occurs frequently for results of De Finetti type or, more generally,
if tail events of random sequences are considered.

Remark 1.6. Our notion of ‘conditional freeness’ should not be confused with that
given in [BLS96], a generalization of free product states in a *-algebraic setting.

Remark 1.7. ‘Weak conditional freeness’ formally simplifies to ‘weak freeness’
(see [Leh06, Definition 4.1]) if ϕ

(
x∗

jα
k(xj)

)
= ϕ

(
x∗

jα
N0(xj)

)
whenever k > N0 for

some N0 ∈ N. But there is also a significant difference: weak conditional freeness
is formulated with respect to a family of von Neumann subalgebras saturated by
the fixed point algebra Mα. In a *-algebraic or C*-algebraic approach one can not
expect that a non-trivial fixed point of α is in Malg := alg{αn(M0) |n ∈ N0} or its

norm closure; the situation Mα ∩Malg
‖·‖

= C · 1lM may occur.

We will need in Section 3 a fixed point characterization result from [Kös08].

Definition 1.8. A stationary process M is said to be order N -factorizable if N
is a ϕ-conditioned von Neumann subalgebra of M and EN (xy) = EN (x)EN (y) for
all x ∈ MI and y ∈ MJ with max I < min J or min I > max J .

Note that the inclusion N ⊂ MI ∩MJ is not required in this definition.

Theorem 1.9. Suppose the minimal stationary process M is order N -factorizable
for the ϕ-conditioned von Neumann subalgebra N of Mα. Then it holds

N = Mα = Mtail.

2. Main result

We assume that the reader is familiar with von Neumann algebraic amalgamated
free products. Their definition and the technical details of their construction can
be found in [JPX07] (see also [VDN92] for an outline).

Theorem 2.1. The following are equivalent for a minimal stationary process M :

(a) F(M ) satisfies weak conditional freeness;
(b) F(M ) satisfies conditional freeness;
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(c) F(M ) embeds canonically into the von Neumann algebra amalgamated free
product

(M̃, ϕ̃) := ∗
Mα

∞

n=0

(
M0 ∨Mα, ϕ|M0∨Mα

)
,

such that the endomorphism α of M is turned into the unilateral shift α̃

on the amalgamated free product factors of M̃.

We record an immediate consequence before giving the proof. Let S∞ denote
the inductive limit of the symmetric groups Sn.

Definition 2.2. A stationary process is said to be exchangeable if, for any n ∈ N0,

ϕ
(
αi1 (a1)α

i2 (a2) · · ·α
in(an)

)
= ϕ

(
απ(i1)(a1)α

π(i2)(a2) · · ·α
π(in)(an)

)

for all n-tuples (i1, . . . in) ⊂ N
n
0 and (a1, . . . an) ∈ Mn

0 and (finite) permutations
π ∈ S∞ on N0.

Corollary 2.3. A minimal stationary process M with weak conditional freeness is
exchangeable.

Proof. Due to Theorem 2.1 we can assume that M is already realized on the von
Neumann algebra amalgamated free product over the fixed point algebra of α. Now
the transposition of the (n−1)-th and n-th factor in the amalgamated free product
implements an ϕ-preserving automorphism γn of M and it is straight forward to
verify that the subgroup (γn)n∈N in Aut(M) enjoys the relations

γiγjγi = γjγiγj if | i − j |= 1,

γiγj = γjγi if | i − j |> 1,

γ2
i = id for all i ∈ N.

Thus we have found a representation of the symmetric group S∞ in Aut(M). The
exchangeability of M is concluded from conditional freeness, ϕ ◦ γi = ϕ and

α(x) = sot- lim
n→∞

γ1γ2 · · ·γn(x), x ∈ M,

where sot denotes the strong operator topology. We conclude the exchangeability
from

ϕ
(
αi1(a1)α

i2(a2) · · ·α
in(an)

)
= ϕ

(
αγk(i1)(a1)α

γk(i2)(a2) · · ·α
γk(in)(an)

)

for all k ∈ N, n-tuples (i1, . . . , in) ∈ Nn
0 and (a1, . . . an) ∈ Mn

0 (see [GK08] for
further details). This completes the proof. �

We prepare the proof of Theorem 2.1 with an operator algebraic version of the
mean ergodic theorem.

Theorem 2.4. Let M be a stationary process. Then for each x ∈ M,

sot- lim
N→∞

1

N

N−1∑

k=0

αk(x) = E(x).

Proof. The strong operator topology (sot) and the ϕ-topology generated by x 7→
ϕ(x∗x)1/2, x ∈ M, coincide on norm bounded sets in M. Thus this mean ergodic
theorem is an immediate consequence of the usual mean ergodic theorem in Hilbert
spaces (see [Pet83, Theorem 1.2] for example). �
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Corollary 2.5. Suppose M is a minimal stationary process. Then for x ∈ M,

lim
N→∞

1

N

N−1∑

k=0

ϕ(x∗αk(x)) = 0 ⇐⇒ x ∈ kerE.

Proof. This is immediate from Theorem 2.4, the faithfulness of ϕ and E, and

lim
N→∞

1

N

N−1∑

k=0

ϕ
(
x∗αk(x)

)
= ϕ

(
x∗E(x)

)
= ϕ(E(x∗)E(x)

)
= 0.

�

Proof of Theorem 2.1. ‘(a) ⇒ (b)’: Let the tuple (x1, x2, . . . , xn) satisfy the as-
sertions of Definition 1.4(ii). Our goal is to show that then (ax1, x2, . . . , xn) also
satisfies them for any a ∈ Mα. Due to Lemma 2.5 it suffices to prove

lim
N→∞

1

N

N−1∑

k=0

ϕ
(
x∗

1α
k(x1)

)
= 0 =⇒ lim

N→∞

1

N

N−1∑

k=0

ϕ
(
x∗

1a
∗αk(ax1)

)
= 0.

Indeed the mean ergodic theorem, the Kadison-Schwarz inequality and properties
of conditional expectations yield

lim
N→∞

1

N

N−1∑

k=0

ϕ
(
x∗

1a
∗αk(ax1)

)
= ϕ

(
x∗

1a
∗E(ax1)

)

= ϕ
(
E(x∗

1)a
∗aEMα(x1)

)

≤ ‖a‖2ϕ
(
E(x∗

1)E(x1)
)

= ‖a‖2 lim
N→∞

1

N

N−1∑

k=0

ϕ
(
x∗

1α
k(x1)

)
.

By our initial assumption, (x1, . . . , xn) satisfies limN→∞
1
N

∑N−1
k=0 ϕ

(
x∗

1α
k(x1)

)
= 0.

We conclude from above estimates that, for any a ∈ Mα,

lim
N→∞

1

N

N−1∑

k=0

ϕ
(
x∗

1a
∗αk(ax1)

)
= 0.

Altogether we have shown that the tuple (ax1, x2, . . . , xn) satisfies all assertions of
Definition 1.4(ii) if the tuple (x1, x2, . . . , xn) does so. Thus, by weak conditional
freeness, ϕ(x1x2x3 · · ·xn) = 0 implies ϕ(ax1x2x3 · · ·xn) = 0 for every a ∈ Mα.
But this entails E(x1x2x3 · · ·xn) = 0 by routine arguments, since we are working
on bounded sets in M.
We note for the proof of ‘(b) ⇒ (c)’ that conditional freeness of F(M) implies the
amalgamated freeness of the family (M{i} ∨ Mα)i∈N0 in (M, E) in the category
of C*-algebraic probability spaces. Thus Voiculescu’s construction of the amal-
gamated free product of C*-algebras applies [Voi85]. Since the definition of M

ensures the existence of ϕ-preserving conditional expectations (see Remark 1.3), all
assumptions of [JPX07, Section 1] are satisfied which are needed for the construc-

tion of the von Neumann amalgamated free product (M̃, ϕ̃). Finally, one verifies

that α becomes the shift α̃ on the amalgamated free product factors of M̃.
The remaining implication ‘(c) ⇒ (a)’ follows from the fact that the shift α̃ has the

von Neumann subalgebra ∗
Mα

∞

n=0
Mα of M̃ as fixed point algebra. Now another



6 C. KÖSTLER

application of the mean ergodic theorem in the style of Corollary 2.5 shows the

weak conditional freeness of the minimal stationary process M̃ ≡ (M̃, ϕ̃, α̃,M̃0),

where M̃0 is the canonical embedding of M0. �

3. Application to Lehner’s exchangeability systems

This section is devoted to the discussion under which conditions an exchange-
ability system (defined in [Leh06]) leads to a stationary process M in the sense of
Definition 1.1. We will show that, under some mild regularity and modular condi-
tions, Lehner’s notion of weak freeness is equivalent to amalgamated freeness (over
the fixed point algebra of the induced stationary process).

We assume that the reader is familiar with the definitions and results of [Leh06].

Definition 3.1. A *-algebraic probability space (Aalg, ϕalg) consists of a unital *-
algebra over C and a unital positive linear functional ϕalg : Aalg → C. We say that
(Aalg, ϕalg) is a regular probability space if:

For every a ∈ Aalg there exists a constant Ca such that

ϕalg(x∗a∗ax) < Caϕalg(x∗x).

Note that this condition is satisfied if Aalg is a pre-C*-algebra. It is well known
that such a regularity condition allows to extend the procedure of the GNS con-
struction from C*-algebras to *-algebras over C. Let us make this more precise for
the convenience of the reader.

Proposition 3.2. Let (Aalg, ϕalg) be a regular probability space. Then there exists
a representation Π of Aalg on a Hilbert space H and a vector ξ ∈ H which is cyclic
for Π(H) such that ϕalg(x) = 〈ξ, Π(x)ξ〉 for all x ∈ Aalg.

Proof. Let N := {x ∈ Aalg |ϕalg(x∗x) = 0}. The regularity condition implies that
the left multiplication N ∋ x 7→ ax is bounded on N for each a ∈ Aalg. Thus the
proof of the usual GNS construction literally translates. �

We are ready to construct a stationary process M starting from a *-algebraic set-
ting of infinite random sequences: Suppose the regular probability space (Aalg, ϕalg),

a unital *-algebra Aalg
0 (over C) and the family

(ιalgn )n≥0 : Aalg
0 → Aalg

of unital *-algebra homomorphisms are given.
Let (Π,H, ξ) denote the GNS triple of the regular probability space (Aalg, ϕalg).

Then the double commutant M := Π(Aalg)′′ in B(H) and ϕ(x) := 〈ξ, xξ〉 define

the probability space (M, ϕ). We let MI :=
∨

i∈I Π ◦ ι
alg
i (Aalg

0 ) and write Mn

if I = {n}. This gives us the filtration (MI)I⊂N0 . Furthermore we may assume
without loss of generality the minimality of this filtration.

Now suppose that the family (ιalgn )n≥0 is stationary, i.e. for every N > 0,

ϕalg
(
ι
alg
i(1)(a1) · · · ι

alg
i(p)(ap)

)
= ϕalg

(
ι
alg
i(1)+N (a1) · · · ι

alg
i(p)+N (ap)

)

for all p-tuples i : {1, . . . , p} → N0 and (a1, . . . , ap) ∈
(
Aalg

0

)p

. It follows from

the asserted stationarity and minimality that there exists a unital ϕ-preserving
endomorphism α of M such that αn(M0) = Mn. Consequently, the quadruple
(M, ϕ, α;M0) defines a (minimal) stationary process M , provided two additional
modular conditions are satisfied:
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1◦ M0 is ϕ-conditioned;
2◦ α is ϕ-conditioned.

We summarize above discussion.

Lemma 3.3. An exchangeability system E in [Leh06] yields a stationary process M

if E can be realized on a regular probability space (Aalg, ϕalg) such that the modular
conditions 1◦ and 2◦ are satisfied.

Proof. It is immediate from the definition of exchangeability (see [Leh06] or [Kös08])
that exchangeability implies stationarity. The remaining construction follows above
discussion. �

Lemma 3.3 motivates us to consider from now on a minimal stationary process
M = (M, ϕ, α;M0) as the starting point for the further discussion of Lehner’s
weak freeness condition.

Definition 3.4 ([Leh06]). Suppose M is a minimal stationary process with a

weak*-dense *-algebra Malg
0 ⊂ M0 and let Malg

I := alg{αi(Malg
0 ) | i ∈ I}. We say

that M and F(M ) satisfy (algebraic) weak freeness if

ϕ(x1x2 · · ·xn) = 0

whenever ϕ(x∗
jα

Nj (xj)) = 0 for xj ∈ Malg
Ij

and Nj > min{N |xj ∈ Malg
{0,...,N}} with

mutually disjoint subsets {Ii | i ∈ Ran i} and i(1) 6= i(2) 6= · · · 6= i(n).

Remark 3.5. The condition Nj > min{N |xj ∈ Malg
{0,...,N}} simplifies to Nj >

max Ij if the index set Ij is bounded. Note that, for unbounded Ij , the choice of
Nj depends on xj .

We generalize this observation to our second main result which improves the
main results in [Leh06] for a large class of exchangeability systems.

Theorem 3.6. Let M be a minimal stationary process such that

Mα ∩Malg
0 = Mα ∩Malg

N0
(∗)

for some weak*-dense *-algebra Malg
0 in M0. Then the following are equivalent:

(a) F(M ) satisfies weak freeness;
(b) F(M ) satisfies amalgamated freeness in (M, E);
(c) F(M ) embeds canonically into the von Neumann algebra amalgamated free

product

(M̃, ϕ̃) := ∗
Mα

∞

n=0

(
M0, ϕ|M0

)
,

such that the endomorphism α of M is turned into the unilateral shift α̃

on the amalgamated free product factors of M̃.

An immediate consequence is that the assumption of ‘exchangeability’ in [Leh06]
is turned into a conclusion.

Corollary 3.7. A minimal stationary process with weak freeness is exchangeable.

Proof. Repeat the proof of Corollary 2.3. �
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Proof of Theorem 3.6. ‘(a) ⇒ (b)’: Suppose M satisfies weak freeness. We con-
clude for xj (as stated in Definition 3.4) that

ϕ(x∗
jα

N (xj)) = ϕ(x∗
jα

N+1(xj)) = lim
N→∞

1

N

N−1∑

n=0

ϕ(x∗
jα

n(xj))

and, by Corollary 2.5,

ϕ(x∗
jα

N (xj)) = 0 ⇐⇒ E(xj) = 0.

We identify in a second step which elements x ∈ Malg
N0

satisfy E(x) = 0. For this
purpose let N and N0 be the von Neumann algebras generated by the orbit of

N alg := Mα ∩Malg
N0

resp. N alg
0 := Mα ∩Malg

0

under the action of the modular automorphism group associated to (M, ϕ). By
construction and Takesaki’s theorem, N and N0 are ϕ-conditioned and we let
EN resp. EN0 denote the corresponding conditional expectations from M onto
N resp. N0. Note that N ⊂ Mα implies ENE = EN . Furthermore we know
N0 ⊂ M0 (we do not know if N ⊂ M0).

Suppose y ∈ Malg
N0

and let x := y − E(y). It is easy to see that x ∈ Malg
N0

if

and only if E(y) ∈ Malg
N0

. Thus E(y) ∈ N alg ⊂ N and E(y) = ENE(y) = EN (y).

At this point we make use of the assumption (∗) which ensures N alg = N alg
0 ,

and consequently N0 = N . Thus x ∈ Malg
N0

satisfies E(x) = 0 if and only if

x = y − EN0(y) for some y ∈ Malg
N0

.

We conclude from this that the filtration F(M ) satisfies amalgamated freeness
in (M, EN0). Suppose that we can prove that N0 ⊂ Mα already implies N0 = Mα.
Then Theorem 2.1 applies and we are done. But the implication that N ⊂ Mα

forces N0 = Mα is the content of the fixed point characterization result, Theorem
1.9, as soon as we can ensure that amalgamated freeness in (M, EN0) implies order
N0-factorizability (see Definition 1.8). This is easily verified and thus the proof is
completed. �

Remark 3.8. We do not know at the time of this writing if the assertion (∗) is

superfluous in Theorem 3.6. Can it be that the *-algebra generated by Malg
0 and

α(Malg
0 ) contains more fixed points of α than Malg

0 ?

Remark 3.9. The condition (∗) can always be ensured by passing from the minimal
stationary process M to its saturation Msat := (M, ϕ, α;M0 ∨N ), where N is as

introduced in the proof of Theorem 3.6. Doing so the *-algebra Malg
0 needs to

be replaced by alg{Malg
0 ,N alg}. This procedure has the same effect as Lehner’s

transfer from exchangeability systems to extended ones (see [Leh06, Remark and
Definition 1.5]).

Acknowledgments. The author thanks James Mingo and Roland Speicher for
useful discussions on cumulants in free probability.
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[GK08] R. Gohm and C. Köstler. Noncommutative independence from the braid
group B∞. Preprint, 2008.

[JPX07] M. Junge, J. Parcet, and Q. Xu. Rosenthal type inequalities for free
chaos. Ann. Probab., 35(4):1374–1437, 2007.

[Kal05] O. Kallenberg. Probabilistic Symmetries and Invariance Principles. Prob-
ability and Its Applications. Springer-Verlag, 2005.
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