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A dual de Finetti theorem
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The quantum de Finetti theorem says that, given a symmetric state, the state obtained by tracing
out some of its subsystems approximates a convex sum of power states. The more subsystems are
traced out, the better this approximation becomes. Schur-Weyl duality suggests that there ought
to be a dual result that applies to a unitarily invariant state rather than a symmetric state. Instead
of tracing out a number of subsystems, one traces out part of every subsystem. The theorem then
asserts that the resulting state approximates the fully mixed state, and the larger the dimension of
the traced-out part of each subsystem, the better this approximation becomes. This paper gives a
number of propositions together with their dual versions, to show how far the duality holds.

PACS numbers: 03.67.-a, 02.20.Qs

I. INTRODUCTION

Suppose we have a state space H = (Cd)⊗n consisting of n identical subsystems. The quantum de Finetti theorem
[1, 2] tells us that, given a symmetric state on H , the state obtained by tracing out n − k of the subsystems can be
approximated by a convex sum of powers, i.e. by a convex sum of states of the form σ⊗k; the smaller k/n, the better
the approximation. This is a useful result, because such power states are often rather easy to analyse.

Now, the symmetric group Sn and the unitary group U(d) both act on the space (Cd)⊗n, the former by permuting
the factors and the latter by applying any g ∈ U(d) to each factor, so the action is given by g⊗n. These actions
commute, and this leads to a type of duality, called Schur-Weyl duality [3]. Given any result that holds for the
symmetric group, one can hope to find a dual result for the unitary group.

Here I show that there is a dual to the de Finetti theorem, obtained by swapping the roles of Sn and U(d). The
situation is summed up in Table I. Instead of symmetric states, we consider unitarily-invariant states. And instead of
tracing out a number of subsystems, we trace out part of each subsystem; more precisely, we replace each individual
subsystem Cd by Cp ⊗ Cq, and we trace out the Cq part from all the subsystems in (Cp ⊗ Cq)⊗n. The theorem then
states that, when q is large relative to n, the resulting traced-out state approximates the fully mixed state. This is
different in character from the standard de Finetti theorem, in that all information about the original state is lost.
However, this fact in itself may lead to some interesting applications.

As far as possible, the results are laid out as pairs of propositions that are duals of each other. Some of these pairs
are exact analogues; in other cases, one of the pair is less meaningful or even trivial. This gives some insight into the
nature of the duality.

TABLE I:

Standard de Finetti theorem. Dual theorem.

Symmetric state ρ. Unitarily-invariant state ρ.

State space is (Cd)⊗n. State space is (Cp
⊗ C

q)⊗n.

Trace out n − k subsystems. Trace out C
q from each subsystem.

trn−kρ ≈ convex sum of powers. trCqρ ≈ fully mixed state.
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II. DUALITY FOR SYMMETRIC WERNER STATES.

We will refer to unitarily-invariant states as Werner states [4]. Rather than considering general Werner states, we
begin by looking at a special class, the symmetric Werner states, i.e. states that are invariant under both the unitary
and symmetric groups. The de Finetti theorem and its dual can then be applied to the same state, so the pattern
becomes particular clear, as shown in Table II.

The Schur-Weyl decomposition [5] of H = (Cd)⊗n is given by:

(Cd)⊗n ∼=
⊕

λ∈Par(n,d)

Uλ ⊗ Vλ, (1)

where Uλ is the irrep (irreducible representation) of U(d) with highest weight λ1 ≥ λ2 ≥ . . . ≥ λd, and Vλ is the irrep
of Sn defined by the same partition λ. Here Par(n, d) denotes the ordered partitions of n with at most d rows. We
will also refer to a λ ∈ Par(n, d) as a (Young) diagram.

Let Pλ denote the projector onto the subspace Uλ ⊗Vλ in the Schur-Weyl decomposition. Write fλ = dim(Vλ), and
ed

λ = dim(Uλ), where d is the dimension of the unitary group U(d). Then the normalised projector ρλ = Pλ/(e
d
λfλ)

is a symmetric Werner state, and in fact any symmetric Werner state ρ can be written as a weighted sum of such
projectors,

∑

µ aµρµ, with
∑

µ aµ = 1 [6]. Let trn−kρλ denote the state obtained by tracing out n − k of the n

subsystems from the state ρλ. Lemma III.4 in [6] can be restated as follows:

Proposition II.1 (Trace formula). Let λ ∈ Par(n, d). Then

trn−kρλ =
1

fλ

∑

µ

ρµfµ

(

∑

ν

cλµνfν

)

,

where the sums extends over all µ ∈ Par(k, d) and ν ∈ Par(n−k, d), and cλµν is the Littlewood-Richardson coefficient,

i.e. the coefficient in the Clebsch-Gordan series for U(d): Uµ ⊗ Uν =
∑

λ c
λ
µνUλ.

From now on, we assume each individual subsystem Cd is bipartite, so it can be written as Cp⊗Cq. Let trCq denote
the result of tracing out C

q from each subsystem in the total state space (Cp ⊗ C
q)⊗n. The dual of the preceding

Proposition is:

Proposition II.2 (Dual trace formula). Let λ ∈ Par(n, pq). Then

trCqρλ =
1

epq
λ

∑

µ

ρµe
p
µ

(

∑

ν

gλµνe
q
ν

)

,

where the sums extend over all diagrams µ ∈ Par(n, p) and ν ∈ Par(n, q), and gλµν is the Kronecker coefficient, i.e.
the coefficient in the Clebsch-Gordan series for Sn: Vµ ⊗ Vν =

∑

λ gλµνVλ.

Proof. We can restrict the action of the group U(pq) on C
p⊗C

q to the subgroup U(p)×U(q). This gives an expansion
in tensor products of irreps [7]:

Uλ =
∑

µν

gλµνUµ ⊗ Uν ,

where µ ∈ Par(n, p) and ν ∈ Par(n, q). If PUλ
denotes the projector onto Uλ, we can rewrite this as

PUλ
=
∑

µν

gλµν
∑

i=1

P i
Uµ

⊗ P i
Uν
. (2)

Taking the trace over Cq gives

trCqPUλ
=
∑

µν

gλµν
∑

i=1

P i
Uµ
eq

ν . (3)

Now define the symmetric average, S, by

S(τ) =
1

n!

∑

π∈Sn

πτπ−1, (4)
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TABLE II:

Duality Dictionary for symmetric Werner states.

fλ (dimVλ). ed
λ (dimUλ).

Littlewood-Richardson coefficient cλ
µν . Kronecker coefficient gλµν .

Unitary group character (Schur function) sλ. Symmetric group character χλ.

Shifted Schur function s∗µ(λ). Character polynomial χλµ(q) (Definition II.4).

Twirled power state. Symmetrised cycle operator.

for any operator τ . Applying S to both sides of (3), Schur’s lemma implies

trCq

Pλ

fλ

=
∑

µ

Pµ

fµ

(

∑

ν

gλµνe
q
ν

)

.

Substituting ρλ = Pλ/(e
pq
λ fλ), ρµ = Pµ/(e

p
µfµ) gives the result we seek.

This shows, incidentally, why the dual operation to tracing out over n − k subsystems is to trace out over part of
each subsystem: the analogue of the subgroup Sk × Sn−k ⊂ Sn is the subgroup U(p) × U(q) ⊂ U(pq).

Theorem 8.1 in [8] allows one to evaluate the bracketted inner sum in Proposition II.1. We restate this result as
follows:

Proposition II.3 (Inner sum formula).

∑

ν

cλµνfν =
fλs

∗
µ(λ)

n ⇂ k
,

where s∗µ(λ) is the shifted Schur function defined in [8] and n ⇂ k = n(n− 1) . . . (n− k + 1).

Likewise, one can evaluate the bracketed inner sum in Proposition II.2. First we introduce a symmetric-group
analogue of the shifted Schur function:

Definition II.4. Suppose λ and µ are arbitrary diagrams with n boxes. The character polynomial χλµ(q) is the
polynomial in q defined by

χλµ(q) =
∑

π∈Sn

qc(π)χλ(π)χµ(π),

where χµ(π) is the character of the symmetric group evaluated at the permutation π and c(π) is the number of cycles
in π.

The character polynomial can sometimes be more conveniently calculated by summing over cycle types α rather
than permutations, giving

χλµ(q) =
∑

α∈Par(n,n)

hαq
c(α)χλ(α)χµ(α),

where hα is the number of elements in the conjugacy class α [9], and c(α) is the number of rows in the diagram α
representing the cycle type.

Proposition II.5 (Dual inner sum formula).

∑

ν

gλµνe
q
ν =

χλµ(q)

n!
.

Proof. First observe that

eq
ν =

1

n!

∑

π∈Sn

qc(π)χν(π). (5)

3



This follows from the fact [9] that the projector Pν on (Cq)⊗n is defined by

Pν =
fν

n!

∑

π

χν(π)π,

and it vanishes on all components of the Schur-Weyl decomposition (1) except Uν ⊗ Vν , where it has trace eq
νfν . On

the other hand, the trace of π acting on (Cq)⊗n is given by qc(π) since the basis elements ei1 ⊗ . . . ⊗ ein
of (Cq)⊗n

that are fixed by π, i.e. that contribute to trπ, are those that assign the same ei to all the elements of each cycle of
π, and there are q ways of picking an ei and c(π) cycles. Thus Pν has trace fν

n!

∑

π q
c(π)χν(π), and equating these two

expressions for the trace gives (5).
Now the Kronecker coefficient can be defined by

gλµν =
1

n!

∑

π

χλ(π)χµ(π)χν(π).

Combining this with (5), we have

∑

ν

gλµνe
q
ν =

1

n!

∑

π,π′

qc(π′)χλ(π)χµ(π)

(

1

n!

∑

ν

χν(π)χν (π′)

)

.

The orthogonality relations for characters imply that the expression in brackets is zero if π and π′ are in different
conjugacy classes, and is otherwise the inverse of h[π], the number of elements in the conjugacy class of π. As c(π′)
only depends on the conjugacy class of π′, the result follows.

Propositions II.3 and II.1 can be used to prove the de Finetti theorem for symmetric Werner states [6]:

Theorem II.6 (de Finetti theorem). Let ρλ be the normalised projector onto the Young subspace of (Cd)⊗n with
diagram λ. Then

||trn−kρλ − τ || ≤ 3

4
· k(k − 1)

λℓ

+O(
k4

λ2
ℓ

) ,

where τ is a convex sum of power states and λℓ is the smallest non-zero component of λ.

Theorem II.7 (Dual de Finetti theorem).

||trCqρλ − I
pn

|| ≤ 2 − 2

(

q − n+ 1

q

)n

=
2n(n− 1)

q
+O(n4/q2),

where I is the identity on (Cp)⊗n.

We leave the proof till section V, where the theorem is proved for all Werner states, not just symmetric ones.

Example II.8. The simplest example is the symmetric subspace for n = 2. Using Propostions II.2 and II.5, we find

trCqρ(2) =
(p+ 1)(q + 1)

2(pq + 1)
ρ(2) +

(p− 1)(q − 1)

2(pq + 1)
ρ(12).

Also

I
p2

=
(p+ 1)

2p
ρ(2) +

(p− 1)

2p
ρ(12),

from which one gets

||trCqρ(2) −
I
p2

|| =
p2 − 1

p2q + p
.

Note that the bound tends to zero with q → ∞ but its behaviour does not depend sensitively upon p; in particular,
there is no requirement for p to be small relative to q (see Discussion).
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III. TWIRLED POWER STATES AND THEIR DUALS

Theorem II.6 in [6] actually makes the stronger claim that the approximating state τ is the twirl of a power state
σk. We describe this now and also its dual version, where the analogue of the power state is a permutation matrix.
However, the rewards of the dual approach diminish rapidly, and one does not get a stronger version of Theorem II.7
as will become clear at the end of this section.

Let us define the twirl of an arbitrary state τ on (Cd)⊗k as follows:

T(τ) =

∫

U⊗kτ(U †)⊗kdU,

where dU is the Harr measure. Suppose r = (r1, . . . , rd) is the spectrum of a state σ on Cd. Then the twirled power
state τ(r) = T(σ⊗k) depends only on r and not on the particular state σ chosen. Lemma III.1 from [6] expresses τ(r)
in terms of basic Werner states.

Proposition III.1 (Twirl sum). Given a spectrum r = (r1, . . . , rd),

τ(r) =
∑

µ

fµsµ(r)ρµ,

where sµ(r) is the Schur function.

To define the dual version of a twirled power state, let π be a permutation, and let b1, . . . bd be a basis in Cd. Define
the permutation matrix τπ by τπ = πI, i.e.

τπ =
∑

0≤i1...in≤d

|(biπ(1)
, . . . , biπ(n)

)〉〈(bi1 , . . . , bin
)|.

Let λ be a Young diagram with n boxes representing a permutation cycle type. Pick any permutation π with cycle
type λ. The symmetrised cycle operator σ(λ) is defined to be S(τπ/d

n), where S is defined by (4). This does not
depend on the choice of a permutation π having the cycle type λ. We can regard S as the “dual twirl”, with the
symmetric group replacing the unitary group. Thus we have:

Proposition III.2 (Dual twirl sum). Given a cycle type λ,

σ(λ) =
1

dn

∑

µ

ed
µχ

µ(λ)ρµ. (6)

Proof. By construction, σ(λ) is symmetric; it is also unitarily invariant, since UτπU
† = UπIU † = πUIU † = πI = τπ.

Thus σ(λ) can be expressed as a sum
∑

µ cµρµ, where the coefficients are given by

cµ = tr[Pµσ(λ)] = tr[PµS(τπ/d
n)] = tr[S(Pµ)τπ]/pn = tr[Pµτπ]/pn,

π being a permutation of cycle type λ. But tr[Pµτπ] is the character of the representation π → PµτπPµ, and as this
is equivalent to ed

µ copies of the irrep Vλ, we have cλ = ed
µχ

µ(λ)/pn.

Note that σ(λ) is in general not a state, since its eigenvalues, the coefficients in (6), can be negative. For instance,
with d = 3, σ((2, 1)) = 10

27ρ(3) − 8
27ρ(13).

Returning to the standard de Finetti theorem, Propositions II.1 and II.3 tell us that, for λ ∈ Par(n, d),

trn−kρλ =
∑

µ

ρµfµ

s∗µ(λ)

n ⇂ k
,

The shifted Schur function [8], s∗µ(λ), which appears on the right-hand side of this equation, is a polynomial in the
λi, and its highest degree terms are the ordinary Schur function sµ(λ). It follows that

s∗µ(λ)

n ⇂ k
→ sµ(λ̄) as n→ ∞, (7)

where λ̄ = (λ1/
∑

λi, . . . , λd/
∑

λi). Putting this together with Proposition III.1, we can restate Theorem II.6,
showing that the approximating state can be taken to be the twirled power state τ(λ̄).
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Proposition III.3 (Twirl limit for de Finetti theorem).

||trn−kρλ − τ(λ̄)|| ≤ 3

4
· k(k − 1)

λℓ

+O(
k4

λ2
ℓ

) . (8)

Dually, Propositions II.2 and II.5 tell us that

trCqρλ =
1

epq
λ

∑

µ

ρµe
p
µ

χλµ(q)

n!
, (9)

We can imitate the approximation of the shifted Schur function by the ordinary Schur function, and take the highest
degree term in χλµ(q), which is qnχλ(1n)χµ(1n). Using equation 6 and the fact that χλ(1n) = fλ, we get

trCqρλ → (pq)nfλ

epq
λ n!

σ(1n) as q → ∞.

We shall see later that the rather complicated coefficient of σ(1n) tends to 1 for large q (see inequality 13). This
enables us to write

Proposition III.4 (Twirl limit for dual de Finetti theorem).

||trCqρλ − σ(1n)|| ≤ 2n(n− 1)

q
+O(n4/q2). (10)

Unlike Proposition III.3, however, this adds nothing to the preceding result (Theorem II.7), since σ(1n) = I/pn. A
more interesting result is obtained from equation (9) without taking the limit of large q:

trCqρλ =
1

n!epq
λ

∑

π

qc(π)χλ(π)σ(π), (11)

This shows how symmetrised cycle operators other than σ(1n) contribute to the trace.

IV. THE QUANTUM MARGINAL PROBLEM AND HORN’S CONJECTURE

We have now compared most of the ingredients of the de Finetti theorem and their dual versions. In this section
we complete this process by comparing the shifted Schur functions that appear in Proposition II.3 with the character
polynomials that appear in Proposition II.5. We do this by relating each of them to a mathematical problem of some
historical interest. For the shifted Schur functions this is Horn’s conjecture [10], whereas for the character polynomials
it is the quantum marginal problem [11]. We begin with the latter.

Let ρA = trB(ρAB) and ρB = trA(ρAB) be the two marginal states of a bipartite state ρAB. Let Σp,q denote the set
of triples of spectra {Spec(ρAB), Spec(ρA), Spec(ρB)} for all operators ρAB on Cp ⊗ Cq. It was shown in [7], [11], [12]
that Σp,q can be defined in terms of the Kronecker coefficients. Given a diagram λ, define λ̄ = (λ1/

∑

λi, . . . λd/
∑

λi),
and let K be the set of all triples (λ̄, µ̄, ν̄) with λ ∈ Par(n, pq), µ ∈ Par(n, p), ν ∈ Par(n, q), for some n, satisfying
gλµν > 0. Then Σp,q is K̄, the closure of K.

One can also focus on a single marginal, and ask which pairs, {Spec(ρAB), Spec(ρA)} of spectra can occur [13].
From the characterisation of Σp,q, it follows that this set, Γp,q say, is the closure of the set of pairs (λ̄, µ̄) where
λ ∈ Par(n, pq), µ ∈ Par(n, p), and there is some ν ∈ Par(n, q) satisfying gλµν > 0. For a given λ, the µ’s satisfying
this condition correspond to the ρµ’s that have non-zero coefficients in the expansion of trCqρλ given by Proposition
II.2. This, together with Proposition II.5, implies

Proposition IV.1 (Character polynomial condition for the marginal problem). Suppose λ ∈ Par(n, pq), µ ∈
Par(n, p), and χλµ(q) > 0. Then (λ̄, µ̄) ∈ Γp,q.

The converse does not follow from the characterisation of Σp,q by Kronecker coefficients. If λ ∈ Par(n, pq) and
µ ∈ Par(n, p), and (λ̄, µ̄) ∈ Γp,q then we know there is a state ρAB with Spec(ρAB) = λ̄ and Spec(ρA) = µ̄, but it does
not follow that Spec(ρB) has the form ν̄ for some ν ∈ Par(n, q), or even that Spec(ρB) is rational. Even if it were true
that Spec(ρB) = ν̄ with ν ∈ Par(n, q), we could only conclude [11, 12] that gmλ mµ mν > 0 for some integer m > 0
and hence that χmλ mµ(q) > 0 for some m > 0.
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Proposition IV.2. For any λ ∈ Par(n, pq), µ ∈ Par(n, p), there is an integer q+ in the range 1 ≤ q+ ≤ n such that
χλµ(q) > 0 for q ≥ q+ and χλµ(q) = 0 for 0 ≤ q < q+. If λ 6= µ, q+ ≥ 2.

Proof. Clearly χλµ(q) = 0 for q = 0, and as χλµ(q) is a polynomial of degree n and can therefore have at most n
distinct roots, there must be some integer q in the range 1 ≤ q ≤ n for which χλµ(q) = 0. Let q+ be the least such q.
Then by Proposition II.5,

∑

ν gλµνe
q+
ν > 0, and thus gλµν > 0 and e

q+
ν > 0 for some ν. Thus eq

ν > 0 for all q ≥ q+,
and χλµ(q) =

∑

ν gλµνe
q
ν > 0 for all q ≥ q+. If λ 6= µ, χλµ(1) = 0 by the orthogonality relations for characters, so

q+ ≥ 2.

This result is also a consequence of a theorem of Berele and Imbo [14], which says that gλµν > 0 for some ν with
c(ν) ≤ max{c(λ), c(µ)}. This implies the stronger result that q+ ≤ max{c(λ), c(µ)}.
Corollary IV.3. For any λ ∈ Par(n, pq), µ ∈ Par(n, p), there is an integer q+ in the range 1 ≤ q+ ≤ n such that
(λ̄, µ̄) ∈ Γp,q for q ≥ q+.

Example IV.4. Take λ = µ. Since every term in χλλ(1) is non-negative, and the term with α = (1n) is f2
λ/n! > 0,

we have χλλ(1) > 0 and hence (λ̄, λ̄) ∈ Γp,1. It is easy to see why this is true: take ρAB = ρA ⊗ |0〉〈0|B, and
Spec(ρAB) = Spec(ρA).

Example IV.5. Take λ = (1n), µ = (n). Then χλ(π) = (−1)n+c(π), by the Murnaghan-Nakayama rule [5], and
χµ(π) = 1 for all π. It follows that

χλµ(q) = (−1)n
∑

π

(−q)c(π) = q(q − 1) . . . (q − n+ 1).

Thus χλµ(q) = 0 for q = 1, . . . , n − 1. Hence (λ̄, µ̄) ∈ Γp,n. For q ≥ n, a state with the appropriate spectra for ρAB

and ρA is ρAB = 1
n
|0〉〈0|A ⊗∑n

i=1 |i〉〈i|B.

Since χλµ(q) = χµλ(q), if λ = (n), µ = (1n) then (λ̄, µ̄) ∈ Γn. A state with the appropriate spectra is ρAB =
|ψAB〉〈ψAB |, where ψAB = 1√

n
|11 + · · · + nn〉AB. (Note that this form of µ implies p ≥ n.)

We can extend Proposition IV.2 as follows

Proposition IV.6. For any λ ∈ Par(n, pq), µ ∈ Par(n, p), there is a positive integer q+ and a negative integer q−
such that χλµ(q) 6= 0 for q ≥ q+ and q ≤ q−, and χλµ(q) = 0 for q− < q < q+.

Proof. Let λ′ denote the diagram conjugate to λ, obtained by interchanging rows and columns. Then χλ′

(π) =

(−)n+c(π)χλ(π), so χλ′µ(q) = (−1)nχλµ(−q). It follows that the negative range of integral roots has the same
properties as the positive range, and the result follows from Proposition IV.2.

Example IV.7. Table III gives some examples of χλµ(q) for n = 5, illustrating the fact that the integral roots form

a sequence without a gap. Note that χλ′µ′

(q) = χλµ(q), since χλ′

(π) = (−)n+c(π)χλ(π). To illustrate the property

χλ′µ(q) = (−1)nχλµ(−q), for each (λ, µ), either (λ′, µ) or (λ, µ′) is also given.
For each λ, µ, states with q = q+ and the appropriate spectra are described in Example IV.4 for the cases where

λ = µ, and in Example IV.5 for the case (5), (15). States for the other cases are easy to construct; eg for (4, 1), (2, 13),
where q+ = 3, we can take p = 4 and

ρAB =
1

5
|11〉〈11|AB +

4

5
|ψAB〉〈ψAB |,

where |ψ〉AB =
1

2
|22 + 33〉AB +

1√
2
|41〉AB.

Turning now to shifted Schur functions, Horn’s conjecture – now a theorem [15] – states that, given λ, µ, ν ∈
Par(n, d), cλµν > 0 if and only if there is triple of n× n Hermitian matrices A, B and C with eigenvalues λ, µ and ν,

respectively, such that A+B = C. Thus, if we know that
∑

ν c
λ
µνfν > 0, we can infer that

Proposition IV.8 (Shifted Schur function condition for Horn’s conjecture). Suppose λ ∈ Par(n, d), µ ∈ Par(k, d).
Then s∗µ(λ) > 0 implies that there are n×n Hermitian matrices A, B and C such that A+B = C and the eigenvalues
of C are λi, and those of A are µi.

Proof. By Proposition II.3, s∗µ(λ) > 0 implies there is some ν ∈ Par(n − k, d) such that cλµν > 0, and by the
Horn-Klyachko theorem there are Hermitian matrices A, B, C with eigenvalues λ, µ, ν, respectively, satisfying
A+B = C.
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TABLE III: Some examples of the polynomials χλµ(q) for n = 5.

λ, µ χλµ(q) integral roots

(5), (5) ; (15), (15) q5 + 10q4 + 35q3 + 50q2 + 24q −4,−3,−2,−1, 0

(5), (4, 1) ; (15), (2, 13) 4q5 + 20q4 + 20q3
− 20q2

− 24q −3,−2,−1, 0, 1

(4, 1), (4, 1) ;(2, 13), (2, 13) 16q5 + 40q4 + 20q3 + 20q2 + 24q −2,−1, 0

(4, 1), (2, 13) 16q5
− 40q4 + 20q3

− 20q2 + 24q 0, 1, 2

(5), (2, 13); (15), (4, 1) 4q5
− 20q4 + 20q3 + 20q2

− 24q −1, 0, 1, 2, 3

(5), (15) q5
− 10q4 + 35q3

− 50q2 + 24q 0, 1, 2, 3, 4

Unlike Proposition IV.1, there is a simple criterion for the conditions of Proposition IV.8 to hold, since s∗µ(λ) > 0

if and only if µ ⊂ λ. This follows immediately from the fact that fλs
∗
µ(λ)/(n ⇂ k) =

∑

ν c
λ
µνfν = dim λ/µ, where

dimλ/µ is the number of standard numberings of the skew diagram λ/µ. This is a positive integer when µ ⊂ λ and
zero otherwise. Indeed, when µ ⊂ λ it is clear that the matrix B with λi − µi down the diagonal satisfies A+B = C,
where A and C are diagonal with spectra µ and λ, respectively. Thus this “two matrix” version of Horn’s conjecture
of the single marginal problem is essentially trivial, unlike its dual counterpart, the single marginal problem. However,
note that the single marginal problem is also trivial, by Proposition IV.2, in the sense that the condition χλµ(q) > 0
is always satisfied, unless one also specifies the dimension q of the traced-out subsystem.

V. GENERAL WERNER STATES.

We now drop the assumption that the state is symmetrical, and consider a general Werner state. First we charac-
terise such states.

Proposition V.1 (Werner state characterisation). Any Werner state ρ can be written

ρ =
∑

λ

∑

i

ri
λP

i
Uλ
,

where ri
λ are positive constants, and P i

Uλ
are projectors onto unitary irreps U i

λ.

Proof. If ρ =
∑

γi|ai〉〈ai| is the eigenvalue decomposition of ρ, unitary invariance implies

ρ =
∑

γiT(|ai〉〈ai|).

From the Schur-Weyl decomposition, we can write

|ai〉 =
∑

λ

γi,λ|ai,λ〉,

and Schur’s lemma then tells us that

T(|ai〉〈ai|) =
∑

λ

|γi,λ|2T(|ai,λ〉〈ai,λ|).

Let U i
λ be the subspace generated by the set {U |ai,λ〉 | U ∈ U(d)}. This is a unitary irrep, and T(|ai,λ〉〈ai,λ|) is an

intertwining operator from U i
λ to itself, and hence by Schur’s lemma is proportional to the projector P i

Uλ
.

Corollary V.2. The number of (real) degrees of freedom of the set of Werner states on (Cd)⊗n is dW =
∑

f2
λ − 1,

where the sum is over λ in Par(n, d).

Proof. Another way of stating the result of the Proposition is that the λ-isotypic part of any Werner state is isomorphic
to ρ ⊗ PUλ

, where ρ is any density matrix on Vλ. But ρ has fλ real terms down the diagonal, with one constraint
due to the sum of eigenvalues being 1, and there are fλ(fλ − 1) real components in the non-diagonal terms above the
diagonal, and those below the diagonal are the conjugates of those above.

8



We are now ready to prove the main theorem:

Theorem V.3 (General dual de Finetti theorem). If ρ is a Werner state on (Cp ⊗ Cq)⊗n and q ≥ n, then

||trCqρ− I
pn

|| ≤ 2 − 2

(

q − n+ 1

q

)n

=
2n(n− 1)

q
+O(n4/q2).

Proof. By Proposition V.1, it suffices to consider a state ρ that is a normalised projector onto a unitary irrep, i.e. a
state of the form

ρ = PUλ
/epq

λ . (12)

Let {ai} and {bj} be bases for Cp and Cq, respectively. We can define the Cartan subgroup of U(pq) as the set
of matrices diagonal in the product basis {ai ⊗ bj}. Let F denote the set of lexicographically ordered n-tuples of
elements of this basis, which we write as ((i1j1) . . . (injn)); these define the weights of Uλ. Let D be the subset
of F where the j indices are distinct; this set is non-empty because we are assuming q ≥ n. The corresponding
weight vectors are linear combinations of terms whose indices are permutations of those that occur in the weight, i.e.
((iπ(1)jπ(1)) . . . (iπ(n)jπ(n))) for some permutation π ∈ Sn.

Let UD
λ be the subspace of Uλ consisting of all the weight spaces for elements of D. A permutation of the product

basis {ai ⊗ bj}, which can be regarded as an element of Spq, induces a unitary map on UD
λ , and hence PD

Uλ
, the

projector on UD
λ , is invariant under such permutations. This implies that terms of the form

(

|aiπ(1)
〉〈aiπ(1)

| ⊗ |bjπ(1)
〉〈bjπ(1)

|
)

⊗ · · · ⊗
(

|aiπ(n)
〉〈aiπ(n)

| ⊗ |bjπ(n)
〉〈bjπ(n)

|
)

in PD
Uλ

all have the same coefficients, since any two such terms with different permuations π in Sn can be mapped

into each other by an appropriate basis permutation in Spq. Thus trCqPD
Uλ

, i.e. the result of tracing out the |bj〉s from

PD
Uλ

, is a sum of terms

|aiπ(1)
〉〈aiπ(1)

| ⊗ · · · ⊗ |aiπ(n)
〉〈aiπ(n)

|,

for all π ∈ Sn, all terms having equal coefficients. Therefore trCqPD
Uλ

is proportional to the identity I on (Cp)⊗n.

Now UD
λ is the union of weight spaces, all of which are isomorphic and have dimension given by the Kostka number

Kλ,(1n), which is fλ (see [5, p. 56-57]). As there are pn sets of possible i-indices in D and
(

q
n

)

sets of distinct j-indices,

UD
λ has dimension fλ

(

q
n

)

pn. Thus,

trCqPD
Uλ

= fλ

(

q

n

)

I.

From this and eq. (12),

trCqρ =
trCqPUλ

epq
λ

=
trCqPD

Uλ

epq
λ

+A =
fλ

(

q
n

)

I
epq

λ

+A,

where A is a positive operator comes from tracing out the remaining weight subspaces in PUλ
− PD

Uλ
. Thus, from the

triangle inequality

||trCqρ− I
pn

|| ≤
(

1 − fλ

(

q
n

)

pn

epq
λ

)

+ ||A|| = 2

(

1 − fλ

(

q
n

)

pn

epq
λ

)

.

The remainder of the proof consists in finding a lower bound for fλ

(

q
n

)

/epq
λ . To do this, we use the Weyl dimension

formula for epq
λ and the hooklength formula for fλ [5] to write

fλ

epq
λ

=
n!(pq − 1)!(pq − 2)! . . . 1!

(pq + λ1 − 1)!(pq + λ2 − 2)! . . . λd!
.

This ratio decreases when a box in the diagram λ is moved upwards, so it achieves its minimum for the diagram (n),
giving

fλ

epq
λ

≥ n!(pq − 1)!

(pq + n− 1)!
.
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1 2

3

T1 T2

3

2

1

FIG. 1: The two tableaux for (2, 1); see Example V.4.

Combining this with the inequality

p(q − i+ 1)

(pq + n− i)
≥ q − n+ 1

q
,

which holds for 1 ≤ i ≤ n, one concludes

fλ

epq
λ

(

q

n

)

pn =
q(q − 1) . . . (q − n+ 1)pn

(pq + n− 1)(pq + n− 2) . . . pq
≥
(

q − n+ 1

q

)n

. (13)

Example V.4. The simplest diagram λ where Vλ is non-trivial is (2, 1). Here fλ = 2, corresponding to the fact that
there are two standard tableaux (numberings of λ that increase downwards and to the right), shown in Figure 1 as
T1 and T2. Let Uλ,1 denote the unitary representation obtained by applying the Young projector [5] for the tableau
T1. The normalised projector ρ = PUλ,1

/epq
λ onto this representation is an example of a Werner state that is not

symmetric. We explicitly calculate an approximation to the trace trCqρ of this state.
As in the above proof, let {ai} and {bi} be bases for C

p and C
q. Given (i1, i2, i3) and distinct (j1, j2, j3), let us

write

|uxyz〉 = (|aix
〉 ⊗ |bjx

〉) ⊗ (|aiy
〉 ⊗ |bjy

〉) ⊗ (|aiz
〉 ⊗ |bjz

〉),

where x, y, z is some permutation of 1, 2, 3. Applying the Young projector to the |uxyz〉 for all possible permutations
of 1, 2, 3 gives the set of vectors

|ψ1〉 = (|u123〉 + |u213〉 − |u321〉 − |u312〉) /2,
|ψ2〉 = (|u132〉 + |u312〉 − |u231〉 − |u213〉) /2,
|ψ3〉 = (|u321〉 + |u231〉 − |u123〉 − |u132〉) /2,

These are linearly dependent, since |ψ1〉+ |ψ2〉+ |ψ3〉 = 0, and make the same angle with each other, since 〈ψi|ψj〉 =
−1/2 for all i 6= j. Thus the projector onto the 2D subspace they span is

2

3
(|ψ1〉〈ψ1| + |ψ2〉〈ψ2| + |ψ3〉〈ψ3|) .

Summing this expression over all (i1, i2, i3) and distinct (j1, j2, j3) gives the projector PUD
λ,1

.

Observe that PUD
λ,1

is not symmetric; for instance |u123〉〈u321| occurs with coefficient −1/3, whereas |u213〉〈u231| has

coefficient 1/6. However, |uxyz〉〈uxyz| has the same coefficient, 1/3, for all permutations x, y, z of 1, 2, 3, and it is
only these terms that contribute to the trace trCqPUD

λ,1
. Summing over distinct indices (j1, j2, j3) we therefore find

trCqPUD
λ,1

= 3!

(

q

3

)(

1

3

)

I.

The factor 3! here arises because, for distinct (i1, i2, i3), there are 3! ways of combining them with a set of distinct
(j1, j2, j3); eg (i1j1, i2j2, i3j3), (i1j2, i2j1, i3j3), etc. When (i1, i2, i3) are not distinct, there are fewer ways of combining
them with (j1, j2, j3), but on tracing out we regain the lost factor.

Since ed
λ = d(d− 1)(d+ 1)/3 for λ = (2, 1), we can write

trCq

PUD
λ,1

epq
λ

=

[

(q − 1)(q − 2)

(q − 1/p)(q + 1/p)

] I
p3
.
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Let α denote the term in square brackets. Then

trCqρ = α
I
p3

+A,

and we see that α→ 1 for q → ∞.

To conclude this section, we look at the dual to Proposition V.1 and its corollary.

Proposition V.5 (Symmetric state characterisation). Any symmetric state ρ can be written

ρ =
∑

λ

∑

i

ri
λP

i
Vλ
,

where ri
λ are positive constants, and P i

Vλ
are projectors onto irreps V i

λ of the symmetric group.

Corollary V.6. The number of degrees of freedom of the set of symmetric states on (Cd)⊗n is dS =
∑

(ed
λ)2 − 1,

where the sum is over λ in Par(n, d).

One might wonder if the standard deFinetti theorem could be proved by methods like those used for Theorem V.3.
It seems that this is not possible, as the symmetric group representations have no analogue of the weight spaces that
are essential for this proof.

VI. DISCUSSION

The de Finetti theorem and its dual seem very different in character. In the case of a symmetric Werner state ρλ,
the standard de Finetti theorem tells us that trn−kρλ, the residual state when n−k subsystems are traced out, can be
approximated by the twirled power state T(σ⊗k), where σ has spectrum λ̄ (see Proposition III.3). If one carries out
a measurement on T(σ⊗k) of the projections onto the subspaces Uµ ⊗Vµ in the Schur-Weyl decomposition of (Cd)⊗k,
the measured µ, normalised to µ̄, approximates λ̄ [16, 17]. One will only get an accurate estimate if k ≫ d; when this
condition is satisfied, most of the information about the initial state is encoded in the traced-out state. By contrast,
when part of each subsystem of a unitary-invariant state is traced out, the resulting state approximates a fully mixed
state, which conveys no information about the initial state.

One might wonder whether this difference between the standard and dual de Finetti theorems is related to the
number of parameters, dS and dW , needed to specify symmetric and Werner states, respectively. Is there a large
reduction in dW in tracing out Cq from each subsystem? If so, the loss of information about the initial state would
be explained. However, this is not the case. In fact, for p > n, dW is given by

∑

f2
λ − 1 over λ ∈ Par(n, d) (Corollary

V.2), and is the same for the whole system, where d = pq, and for the traced-out system where d = p. There is
actually more of a reduction in the number of parameters with the standard de Finetti theorem, since dS is given by
∑

λ∈Par(n,d)(e
d
λ)2 − 1 (Corollary V.6), which does increase, though only polynomially, with n.

For the approximation to the fully mixed state to be close, the dimension q of the traced-out part of each subsystem
must be large relative to n(n− 1), where n is the number of subsystems. Note that one does not require that p/q is
small, where p is the dimension of the remaining part of each subsystem after tracing-out. The situation is therefore
not directly analogous to the standard de Finetti theorem, where a good approximation requires that (n− k)/n, the
ratio of the number of subsystems traced out to the total number of subsystems, be close to 1.

When n = 1, the bound in the dual de Finetti theorem is zero, which tells us that no tracing-out is needed; this
just conveys the familiar fact that averaging the action of U(d) on a state on Cd gives the fully mixed state. One can
ask which finite subsets S of U(d) have the property that the average

∑

S UρU
†/|S| gives a good approximation to

the fully mixed state for any ρ, and it is known [18] that there are such sets with |S| ≈ d log d. The same question
can be posed for n > 1, though now we expect to have to trace out part of each subsystem to get an approximation
to the completely mixed state.

The dual de Finetti theorem has a certain resemblance to a theorem proved in [19]. This asserts that if HE , the
state space of the environment, is traced-out from a random state ρ on the product of the system and environment
HS ⊗HE, then trEρ is approximately a fully mixed state, the approximation improving as dimHE/ dimHS increases.
(Actually the theorem holds more generally, for a state defined on an arbitrary subspace of HS ⊗HE .) This suggests
that obtaining the fully mixed state after tracing out should be a property that holds for “almost all states”, and not
just for those with the special structure of Werner states. One might therefore hope to be able to extend the dual
de Finetti theorem to a larger class of states (though mathematics abounds with propositions known to be almost
always true, yet where specific instances are rather hard to find).
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A natural application is to quantum secret-sharing: the theorem tells us that this can be achieved by splitting up
the subsystems of a Werner state and giving them to two or more parties. With two parties, for instance, each can
have half of each subsystem, though the dimension of each subsystem has to be large relative to n for this to work.
Note that the procedure relies on the fact that p/q does not have to be small; we need to be able to regard both C⊗q

and C⊗p as the traced-out part (and similarly for more than two parties).
Finally, one can ask whether the de Finetti theorem and its dual are facets of some more all-embracing version of

the theorem.
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