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A Finite de Finetti Theorem for Infinite-Dimensional Systems
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We formulate and prove a de Finetti representation theorem for finitely exchangeable states of
a quantum system consisting of k infinite-dimensional subsystems. The theorem is valid for states
that can be written as the partial trace of a pure state |Ψ〉 〈Ψ| chosen from a family of subsets {Cn}
of the full symmetric subspace for n subsystems. We show that such states become arbitrarily close
to mixtures of pure power states as n increases. We give a second equivalent characterization of the
family {Cn}.

The classical de Finetti theorem [1, 2] is a representa-
tion theorem for exchangeable probability distributions.
It is of fundamental importance for the analysis of re-
peated trials in Bayesian statistics [3]. For positive inte-
gers n and k, a joint probability distribution for k random
variables is said to be n-exchangeable, or simply finitely

exchangeable, if it can be written as the marginal of a
symmetric distribution for n variables. A distribution is
said to be infinitely exchangeable if it is n-exchangeable
for all n. The content of the de Finetti theorem is that
any infinitely exchangeable probability distribution can
be written as a convex mixture of power distributions
[1, 4]. Additionally, finitely exchangeable distributions
can be approximated by such mixtures [2].

FIG. 1: Quantum generalizations of the classical de Finetti
theorem fall into four classes. One can assume finite or in-
finite exchangeability, and the subsystems can be finite or
infinite-dimensional. In the case of infinite exchangeability,
we study a state ρk that can be written as ρk = trn−k(ρn),
for every integer n > k for a symmetric state ρn. The theo-
rems then state that ρk can be written as a mixture of power
states [5, 6, 7]. If finite exchangeability is assumed, the quan-
tum de Finetti theorem says that a state ρk = trn−k(ρn), for
a fixed value of n and symmetric state ρn, can be approxi-
mated by a mixture of power states. The remaining case of
finite exchangeability and infinite-dimensional subsystems is
the topic of this Letter.

FIG. 2: A constructive illustration of symmetric states. A
state ρn is symmetric when πρnπ† = ρn for all permutations
π. In the figure, we illustrate these states as those for which
the state ρk is independent of the choice of n− k subsystems
to trace out, and of the order in which we place the remaining
k.

In recent years there has been increased interest in
quantum analogues of the de Finetti theorem. Figure 1
gives an overview of the possibilities. They are of fun-
damental interest in mathematics [6, 8, 9], quantum in-
formation theory [7, 10, 11, 12], and quantum founda-
tions [7]. Concrete applications include quantum state
tomography [7, 13], quantum process tomography [14],
entanglement purification [11], and quantum cryptogra-
phy [15, 16]. Despite the progress in this field, it remains
an open question what quantum de Finetti theorems ex-
ist for finitely exchangeable states on an array of infinite-
dimensional subsystems. A direct generalization of the
classical theorem to all finitely exchangeable quantum
states is impossible due to a counterexample given in
[12]. There the authors construct, for any integer n > 2,
an n-exchangeable state on two infinite-dimensional sub-
systems that has a trace distance of at least 1/2 from any
mixture of power states [5].

In this Letter we prove a quantum de Finetti theorem
for a particular class of n-exchangeable quantum states
on a Hilbert space H⊗k, where H is infinite-dimensional,
and where n and k are arbitrary. Our class consists
of all those pure states ρn = |ψ〉 〈ψ| where |ψ〉 can be
written as a superposition of the form

∫
dγ cγ |γ〉⊗n and

each |γ〉 is a coherent state. It should be noted that
such a superposition is very different from a mixture of
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power states. This class contains many physically rele-
vant states, the simplest example being the Schrödinger
cat states |α〉⊗n + |β〉⊗n of n optical modes. While such
states are covered by the finite de Finetti theorem, in
reality they are often an approximation to a continuous
superposition

∫
dγ cγ |γ〉⊗n where cγ is strongly peaked

around α and β. Such states can only be incorporated
by our infinite version of the quantum de Finetti theorem,
since they cannot be represented on any tensor product
space V⊗n, where V is a finite-dimensional subspace of H.
We note that several current experiments dealing with
systems of many identical particles [17, 18] can produce
continuous cat states of the form

∫
dγ cγ |γ〉⊗n. Some

examples include double-well Bose-Einstein condensates
[19], superconducting current loops [20, 21], and spin-
polarised atomic ensembles [22].

The Letter is structured as follows. Having defined in
more detail the family of subsets {Cn} to which our the-
orem applies, we state our theorem and give an outline
of the steps involved in proving it. The latter parts con-
sider the details of the proof, and we conclude with some
remarks about the extension of this theorem to larger
symmetric subspaces.

Coherent States .— We begin by introducing the states
which we shall study. Consider a finite collection of n
quantum systems each with a countably infinite Hilbert
space H, such as n modes of the electromagnetic field.
Let |0〉 , |1〉 , . . . label an arbitrary basis for H. A tensor-
product basis state |x〉 of H⊗n, labelled by the word x,
is given by |x〉 = |x1〉 ⊗ . . . ⊗ |xn〉. Let the annihilation
operator a be the operator that lowers the basis states
according to a |j〉 =

√
j |j − 1〉, generalizing the standard

definition for harmonic oscillators. For α ∈ C, a coherent
state |α〉 is the eigenstate of the annihilation operator
with eigenvalue α [23]. In this Letter, we prove a de
Finetti theorem for the span Cn of coherent power states

|α〉⊗n
.

An equivalent description of Cn.— The above defini-
tion of Cn is in terms of the overcomplete spanning set
{|α〉⊗n |α ∈ C}, and so does little to elucidate the states
that it encompasses. We shall provide a brief alternative
definition in terms of a basis which is closely linked to
the multinomial basis for the symmetric subspace.

The space Sn is defined to be the span of states |w〉,
given by

|w〉 =

√

1

nw




∑

y,
P

yi=w

√

w!

y1! . . . yn!
|y〉



 , (1)

for all w ∈ Z, w ≥ 0. It is possible to show that Sn ≡ Cn

[24], and so the states {|w〉} provide an orthonormal
countable basis of the coherent power subspace. They
are analogous to the classical urn model of w tosses of a
fair n-sided coin.

This second characterization allows us to gain an in-
sight into the relative size of Cn and the full symmetric

subspace, SymH⊗n. To do so, we define the w-weighted
subspace to be the symmetric span of all states |x〉 that
satisfy

∑
xi = w and we note that SymH⊗n is the direct

sum of these. The dimension of the w-weighted subspaces
grows polynomially with w, but in contrast Cn contains
only the state |w〉 with weight w.

A de Finetti theorem.— If ρn is a pure state on a par-
ticular Cn, we are able to approximate the reduction to k
systems trn−k(ρn) as a mixture of coherent power state
projectors. More precisely, we can construct a probabil-
ity measure ν(α) such that

∆ ≡
∣
∣
∣
∣

∣
∣
∣
∣
trn−k(ρn) −

∫
(
|α〉 〈α|

)⊗k
ν(α) d2α

∣
∣
∣
∣

∣
∣
∣
∣
1

≤ 3

2

k

n
.

(2)
Here, the trace norm ||σ||1 is the sum of the absolute
values of the eigenvalues of σ.

Proof Outline.— To prove this theorem, two main steps
are necessary. We begin by constructing the operator

Λn,k =
n− k

π

∫

d2α Ik ⊗
(

|α〉 〈α|
)⊗n−k

, (3)

where Ik is the identity on the first k subsystems. We
show that its restriction to the span Cn of coherent power
states is equal to the identity, which transforms the term
trn−k(ρn), in Eq. (2), into an integral. This allows the
use of standard inequalities to bound ∆ from above.

The displacement operator, defined below, plays the
rôle of the unitary transformations from [12]. The cru-
cial fact is that in our integral Λn,k, analogous to that
used in [12], we have no divergent dimension-dependent
factor, which would be the case for a direct application of
the existing proof. Without this an infinite-dimensional
result is not possible.

An identity operator for coherent power states .— We
now wish to show that Λn,k is the identity operator on
Cn. In order to study the multi-mode states, we note that
the single-mode states have an explicit expansion in the
basis |0〉, |1〉, . . ..

|α〉 = e−|α|2/2
∞∑

i=0

αi

√
i!

|i〉 = D(α) |0〉 , (4)

where D(α) is the displacement operator , D(α) =

eαa†−ᾱa.
The proof takes two parts. We first show that Λn,k

acts identically upon the vacuum state, and move on to
show that it commutes with the displacement operator.
Explicitly we intend to show

Λn,k |0〉 = |0〉 , (5)
[
Λn,k, D(α)⊗n

]
= 0 . (6)

We prove Eq. (5) by using the expansion of a coherent
state given in Eq. (4). Consider the inner product of
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Λn,k |0〉 with a basis vector labelled by a word x.

〈x|Λn,k |0〉 =

n− k

π
δx1,0 . . . δxk,0

∫

d2α e−(n−k)|α|2
n∏

i=k+1

ᾱxi

√
xi!
.

The integral is zero unless xi = 0 for k < i ≤ n, in which
case we obtain

〈x|Λn,k |0〉 =

{

1 if x = 0

0 otherwise.
(7)

This means that Λn,k |0〉 = |0〉. While proving Eq. (6)
we employ the notation Dm

α = D(α)⊗m.

Λn,k D
n
α =

n− k

π

∫

d2β Ik ⊗
(

Dn−k
β |0〉 〈0|Dn−k

−β

)

Dn
α

=
n− k

π

∫

d2β Dk
α ⊗

(

Dn−k
β |0〉 〈0|

[

Dn−k
−β Dn−k

α

])

=
n− k

π

∫

d2γ Dk
α ⊗

([
Dn−k

α Dn−k
γ

]
|0〉 〈0|Dn−k

−γ

)

=
n− k

π

∫

d2γ Dn
α

(
Ik ⊗Dn−k

γ |0〉 〈0|Dn−k
−γ

)

= Dn
αΛn,k = D(α)⊗n Λn,k,

where we have substituted γ = β−α and used the prop-
erty D(x+ y) = e

1

2
(xȳ−x̄y)D(x)D(y).

To complete the proof we combine the two previous
results,

Λn,k |α〉⊗n
= Λn,k D(α)⊗n |0〉
= D(α)⊗nΛn,k |0〉
= D(α)⊗n |0〉
= |α〉⊗n

.

(8)

Establishing the bound on ∆.— Having demonstrated
that we have a resolution of the identity on Cn we can
now begin the proof of the theorem itself. The state ρn

is pure, and thus is given by some ρn = |Ψ〉 〈Ψ|. For
each α we define a non-normalized state on the first k
subsystems

|Ψα
k 〉 =

√

n− k

π

(

Ik ⊗ 〈α|⊗n−k

)

|Ψ〉 ,

with corresponding positive operator

ρα
k = |Ψα

k 〉 〈Ψα
k |

=
n− k

π
trn−k

(

Ik ⊗
(

|α〉 〈α|
)⊗n−k

|Ψ〉 〈Ψ|
)

.
(9)

Since |Ψ〉 ∈ Cn, we note that

∫

ρα
k d

2α = trn−k (Λn,k |Ψ〉 〈Ψ|) = trn−k(ρn). (10)

To define the measure ν(α) in Eq. (2), we further

project the states ρα
k onto Pα = |α〉 〈α|⊗k

and define

ν(α) = tr(Pαρα
k ), so that |α〉 〈α|⊗k

ν(α) = Pαρα
kP

α. We
then have

∆ =

∣
∣
∣
∣

∣
∣
∣
∣

∫

d2α (ρα
k − Pαρα

kP
α)

∣
∣
∣
∣

∣
∣
∣
∣
1

≤
∣
∣
∣
∣

∣
∣
∣
∣

∫

d2α (ρα
k − Pαρα

k )

∣
∣
∣
∣

∣
∣
∣
∣
1

︸ ︷︷ ︸

ζ

+

∣
∣
∣
∣

∣
∣
∣
∣

∫

d2α (ρα
k − ρα

kP
α)

∣
∣
∣
∣

∣
∣
∣
∣
1

︸ ︷︷ ︸

η

+

∣
∣
∣
∣

∣
∣
∣
∣

∫

d2α (Ik − Pα)ρα
k (Ik − Pα)

∣
∣
∣
∣

∣
∣
∣
∣
1

︸ ︷︷ ︸

θ

,

using an identity presented in [12]—

A−BAB = (A−BA) + (A−AB) − (I −B)A(I −B).

And so it is necessary to calculate bounds for ζ, η and
θ. We may do so by employing the completeness relation
that Λn,k provides.

ζ =

∣
∣
∣
∣

∣
∣
∣
∣
trn−k(ρn) −

∫

d2α
n− k

π
trn−k

(

|α〉 〈α|⊗n
ρn

)
∣
∣
∣
∣

∣
∣
∣
∣
1

=

∣
∣
∣
∣

∣
∣
∣
∣
trn−k(ρn) − n− k

n
trn−k

(
Λn,0ρn

)
∣
∣
∣
∣

∣
∣
∣
∣
1

=

(

1 − n− k

n

)∣
∣
∣

∣
∣
∣trn−k

(

ρn

)∣
∣
∣

∣
∣
∣
1

=
1

2

k

n
.

Similarly, we have that η = 1
2

k
n . Bounding θ is only

marginally more complicated. Beginning with the trian-
gle inequality,

θ ≤
∫

d2α ||(Ik − Pα)ρα
n(Ik − Pα)||1

≤ 1

2

∫

d2α tr |(Ik − Pα)ρα
n(Ik − Pα)| .

Now, since we have the projector, Ik − Pα, straddling a
completely positive operator, ρα

n , this simplifies to

θ ≤ 1

2

∫

d2α tr ((Ik − Pα)ρα
n)

≤ 1

2
tr

(∫

d2α (Ik − Pα)ρα
n

)

≤ 1

2
tr

((

1 − n− k

n

)

trn−k ρn

)

=
1

2

k

n
.

Bringing this all together gives us the final bound since
∆ ≤ ζ + η + θ.



4

Conclusion.— We have stated and proved a de Finetti
theorem for a limited class of finitely exchangeable states
in a Hilbert space of countably infinite dimension. The
counterexample given in [12] shows that we shall never
have a direct generalisation of the classical scenario. An
important question concerns the characterization of the
set of finitely exchangeable states for which approximate
de Finetti representations do exist. Our work provides
a partial answer to this question for a class of states to
which the previously known de Finetti theorems do not
apply.

It is possible to extend our results to a larger class
of states by considering the countably infinite Hilbert
space H as a tensor product of two, or possibly more,
subsystems. For example, H is equivalent to a tensor
product of itself and a qubit, providing both a new family
of de Finetti states and a new bound on ∆. This is the
subject of ongoing work.

This work was supported by the UK Engineering and
Physical Sciences Research Council. We thank Renato
Renner, Robert König, and Graeme Mitchison for useful
discussions.
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