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Examples of bosonic de Finetti states over

finite dimensional Hilbert spaces

Alex D. Gottlieb

Abstract

According to the Quantum de Finetti Theorem, locally normal infi-

nite particle states with Bose-Einstein symmetry can be represented as

mixtures of infinite tensor powers of vector states. This note presents

examples of infinite-particle states with Bose-Einstein symmetry that

arise as limits of Gibbs ensembles on finite dimensional spaces, and

displays their de Finetti representations. We consider Gibbs ensem-

bles for systems of bosons in a finite dimensional setting and discover

limits as the number of particles tends to infinity, provided the tem-

perature is scaled in proportion to particle number.

1 Introduction

According to the Quantum de Finetti Theorem [2], locally normal infinite-
particle states with Bose-Einstein symmetry can be represented as mixtures
of infinite tensor powers of vector states. This note presents examples of
infinite-particle states with Bose-Einstein symmetry that arise as limits of
Gibbs ensembles on finite dimensional spaces, and displays their de Finetti
representations.

The central example is as follows. If the single-particle Hilbert space H
is finite dimensional, the projector onto the symmetric subspace of the n-
particle space can be normalized, and this defines the infinite-temperature
ensemble for n bosons with single-particle space H. For each fixed m ∈ N, the
m-particle reduced density operators under the n-boson infinite-temperature
ensembles converge, as n tends to infinity, to the density operator describing
the m-particle statistics under a certain bosonic infinite-particle state ω0.
The infinite-particle state ω0 has a de Finetti representation as a mixture
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of infinite tensor powers of vector states Pv, where v is a unit vector and
Pv = |v〉〈v| denotes the projector onto the span of v. In the de Finetti
mixture for ω0, the weight of the tensor power state Pv

⊗∞ is the probability
density for v ∈ H ∼

= Cd+1 to equal

v(p, θ) =
(

eiθ0
√
p0, e

iθ1
√
p1, . . . , e

iθd
√
pd

)

(1)

when p = (p0, p1, . . . , pd) is sampled uniformly from the d-dimensional sim-
plex ∆d and the phase angles θi in θ = (θ0, θ1, . . . , θd) are each sampled
uniformly from [0, 2π), independently of one another and of p. Thus the
infinite-particle state ω0 corresponds to the uniform probability measure on
∆d × [0, 2π)d+1.

Similar limits are obtained for finite temperature Gibbs ensembles, pro-
vided the temperature is scaled properly. Suppose H is a Hermitian operator
on the single-particle space H ∼

= Cd+1 and Γn(β) denotes the Gibbs canon-
ical ensemble for n noninteracting bosons with single-particle Hamiltonian
H at inverse temperature β. Then, as n tends to infinity, the m-particle
reduced density operators under Γn(β/n) converge to the m-particle den-
sity of a certain bosonic infinite-particle state ωβ. The infinite-particle state
ωβ is an average of states Pv

⊗∞ with respect to the probability density on
∆d × [0, 2π)d+1 that minimizes the “free energy”

∫

[0,2π)d+1

∫

∆d

〈v, Hv〉f(p, θ) dp dθ +
1

β

∫

[0,2π)d+1

∫

∆d

f(p, θ) ln f(p, θ) dp dθ ,

where v = v(p, θ) is as in (1). We obtain similar results for bosons with “mean
field” interactions, but again we must scale temperature in proportion to the
number of particles. This stands in contrast to the analogous mean field
limits for distinguishable particles, which are obtained without any peculiar
scaling of temperature [1].

The physical relevance of these facts is limited. On the one hand, they
concern limits of canonical ensembles, which are appropriate when the num-
ber of bosons is fixed, and therefore not appropriate for massless bosons (e.g.,
photons). On the other hand, massive bosons inhabit infinite dimensional
Hilbert spaces, so to speak, whereas our results concern finite dimensional
Hilbert spaces. However, the sort of ensemble we study is appropriate for
(noninteracting) systems of n material bosons in thermal equilibrium, in case
it is known that every one of these bosons is trapped in a potential well of
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depth E. The statistical state of that system would be a conditional Gibbs
ensemble, supported on the finite dimensional Hilbert space spanned by the
symmetrized products of trapped (bound) states. Only noninteracting sys-
tems of trapped bosons are considered, because the conditional Gibbs en-
semble only makes sense if the Hamiltonian of the system commutes with
the observable that every particle is trapped.

Our results are presented in Section 3, after a quick review of the Quan-
tum de Finetti Theorem in the next section.

2 The Quantum de Finetti Theorem

Let H be Hilbert space (which we will call the single-particle Hilbert space)
and let H⊗n denote the n-fold tensor power of H (the n-particle Hilbert
space). When π denotes a permutation of {1, 2, . . . , n}, let Uπ denote the
unitary “permutation” operator on H⊗n defined by

Uπ(x1 ⊗ x2 ⊗ · · · ⊗ xn) = xπ(1) ⊗ xπ(2) ⊗ · · · ⊗ xπ(n) .

For each n ∈ N let Dn be a density operator on the n-particle Hilbert space
H⊗n, the n-fold tensor power of H. We want the density operators Dn to be
symmetric, and we assume

(A) for all n, the density operator Dn commutes with any permutation op-
erator Uπ on H⊗n .

We are especially interested here in systems of bosons, for which

(B) for all n, DnUπ = Dn for any permutation operator Uπ on H⊗n.

Condition (B) is stronger than (A). We also want the sequence {Dn} of
density operators to be consistent with respect to “subsampling” in the sense
that

(C) for all m < n, Dn:m = Dm,

where Dn:m denotes the mth partial trace of Dn, i.e., the operator such that

Tr(Dn:mA) = Tr(Dn(A⊗ I
n−m times
⊗ · · ·⊗ I))

for all A ∈ B(H⊗m).
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The structure of sequences {Dn} of density operators satisfying (C) and
(A) or (B) is given by the quantum analogue of the de Finetti Theorem of
probability theory [2]. Let ρ be a density operator on H. A sequence {Dn}
of density operators of the form

D1 = ρ

D2 = ρ⊗ ρ

D3 = ρ⊗ ρ⊗ ρ , et cetera (2)

always satisfies (A) and (C), but it satisfies (B) and (C) if and only if ρ is a
pure state, i.e., a rank one projector on H. Roughly speaking, any sequence
of density operators satisfying (A) and (C) is uniquely representable as a
mixture of sequences of the form (2). That is, if {Dn} satisfies (A) and (C)
then there exists a unique probability measure µ supported on the single-
particle density operators such that

Dn =

∫

ρ⊗nµ(dρ) (3)

for all n. Furthermore, if {Dn} satisfies (B) and (C), then the measure
µ(dρ) in the integral representation (3) is even supported on the set of vector
states ρ = Pψ. This paraphrases the propositions of [2], ignoring the technical
details; we now restate the results with more care.

For m ≤ n, let jmn denote the *-isomorphic embedding

jmn(B) = B ⊗ I⊗n−m

of B(H⊗m) into B(H⊗n). The system of C* algebras B(H⊗n) and isomorphic
injections jmn has an inductive limit A. The inductive or direct limit in the
category of C* algebras may be constructed as in [3, Proposition 11.4.1].
The inductive limit A is unique up to isomorphism, and for each n there is
a *-isomorphism in from B(H⊗n) into A such that injmn = im for all m ≤ n
and the union of the images in(B(H⊗n)) is dense in A. A sequence {Dn}
of density operators satisfying the conditions (C) can be used to define a
continuous positive linear functional ω on A by

ω(in(B)) = Tr(DnB) ∀B ∈ B(H⊗n) . (4)

This is well-defined thanks to the consistency conditions (C) and the density
of ∪in(B(H⊗n)) in A. In particular, ω(e) = 1, where e is the identity element
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of the C* algebra A. If {Dn} satisfies (A) as well as (C) then ω is symmetric
in the sense that

ω(in(UπBU
∗
π)) = ω(in(B)) (5)

for all n, all B ∈ B(H⊗n), and all π ∈ Πn, the set of permutations of
{1, 2, . . . , n}. The set of all “symmetric states” on A, i.e., the set

SS =
{

ω ∈ A∗
∣

∣

∣
ω(e) = 1 and ω(x∗x) ≥ 0 ∀x ∈ A and ω satisfies (5)

}

,

is a convex subset of the Banach dual A∗ of A, and it is compact with respect
to the weak* topology. Let SS1 denote the space of single-particle states,
i.e., the set

SS1 =
{

ρ ∈ B(H)∗
∣

∣

∣
ρ(I) = 1 and ω(A∗A) ≥ 0 ∀A ∈ B(H)

}

endowed with the relative weak* topology it inherits as a subset of the Banach
dual B(H)∗ of B(H) . It was first shown in [4] that each ω ∈ SS has a unique
representation as an integral of product states

ω =

∫

SS1

ρ⊗ ρ⊗ ρ⊗ · · · · · · µ(dρ) =

∫

SS1

ρ⊗∞µ(dρ) , (6)

where µ is a probability measure on the σ-algebra F1 generated by the in-
tersections with SS1 of weak* open sets in B(H)∗. We sketch a proof of this,
following reference [2]: First, the extreme points of SS are identified as the
product states ρ⊗∞. Thus, the set of extreme points is the image of the com-
pact space SS1 under the continuous injection ρ 7−→ ρ⊗∞, and it follows that
the extreme set is closed in SS. The existence of an integral representation
(6) is then a consequence of the Krein-Milman Theorem, and its uniqueness
is shown in [2] by a direct argument.

It is further shown in [2] that the measure µ(dρ) appearing in the integral
representation (6) of ω is supported on the measurable subset of normal
states on B(H) if ω is determined, as in formula (4) above, by sequences
of density operators satisfying (A) and (C). If, in addition, the sequence of
density operators defining ω satisfies (B), then the measure µ(dρ) is even
supported on the vector states ρ(A) = 〈ψ,Aψ〉 with ‖ψ‖ = 1.

3 Examples of bosonic de Finetti states

In this section we exhibit some sequences {Dn} satisfying (B) and (C) that
are obtained from natural statistical ensembles. In all of these examples, the
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single-particle Hilbert space H is finite dimensional. After introducing the
notation, we will state all of our results before proceeding to their proofs.

Let H = Cd+1 and let H(n) denote the subspace of symmetric vectors in
H⊗n. Let Σn denote the symmetrizing projector

Σn =
1

n!

∑

π∈Πn

Uπ (7)

from H⊗n onto H(n). We now introduce notation for the occupation num-
ber basis of H(n) relative to a fixed orthonormal (ordered) basis {ej} of H.
Let n = (n0, n1, . . . , nd) be an ordered d + 1-tuple of nonnegative integers
(occupation numbers) and let #n denote

∑

nj. We use the notation

(

n

n

)

= n!
/

d
∏

i=0

ni!

for multinomial coefficients. The vector

Ψ
n

=

√

(

n

n

)

Σn(e
⊗n0
0 ⊗ e⊗n1

1 ⊗ · · · ⊗ e⊗nd

d ) (8)

is a unit vector in H(n), and the set of vectors {Ψ
n
| #n = n} is an orthonor-

mal basis of H(n). Let P
n

denote the rank-one projector onto the span of Ψ
n
:

P
n
Φ = 〈Ψ

n
,Φ〉Ψ

n
. (9)

We begin by considering the “uniformly mixed” density operators sup-
ported on H(n):

Proposition 1 Let Σn denote the symmetrizing projector (7). For each m,

Sm ≡ lim
n→∞

1

TrΣn
Σn:m =

∑

m:#m=m

{

(

m

m

)
∫

∆d

d
∏

i=0

pmi

i λd(dp)
}

P
m
, (10)

where λd(dp) denotes normalized Lebesgue measure on the d-dimensional sim-
plex

∆d =
{

p = (p0, p1, . . . , pd) ∈ R
d+1

∣

∣ 0 ≤ pi i = 1, 2, . . . , d and

d
∑

i=0

pi = 1
}

.
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The sequence {Sm} satisfies (B) and (C) of Section 2. By the Quantum de
Finetti Theorem, there exists a measure µ supported on the pure states on
Cd+1 such that

Sm =

∫

P⊗mµ(dP )

for all m ∈ N. This measure can be described as follows. Define the map

v : ∆d × [0, 2π)d+1 −→ C
d+1

by

v(p0, p1, . . . , pd, θ0, θ1, . . . , θd) =

d
∑

j=0

eiθj
√
pj ej (11)

where {ei} is the standard basis of Cd+1. The map v is many-one onto the set
of unit vectors in Cd+1. The probability measure µ(dP ) is the one induced
via v from the uniform measure

λ(dp)σ(dθ) ≡ λ(dp)
dθ0
2π

dθ1
2π

· · · dθd
2π

on ∆d × [0, 2π)d+1. In other words,

Proposition 2 The density operator (10) equals
∫

∆d

∫

[0,2π)d+1

(

Pv(p,θ)

m times
⊗ · · ·⊗ Pv(p,θ)

)

σ(dθ)λd(dp) . (12)

Next we consider Gibbs ensembles for noninteracting systems of bosons.
Let

Hn =

n
∑

i=1

Ti (13)

be the Hamiltonian for n noninteracting bosons with single-particle space
H = Cd+1. Let {ej} be an orthonormal basis of H consisting of eigenvectors
of the single-particle operator T , so that Tej = ǫjej . The Gibbs density
operator for the n boson system is

Γn(β) =
1

Zn,β

∑

n:#n=n

d
∏

i=0

e−βniǫiP
n

with Zn,β =
∑

n:#n=n

d
∏

i=0

e−βniǫi .

(14)
An interesting limit is attained if temperature is scaled in proportion to n
as n −→ ∞. If the temperature is not scaled as n −→ ∞ then a sort of
Bose-Einstein condensation is attained in the limit.
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Proposition 3 Let Hn be the noninteracting Hamiltonian (13) and let Γn(β)
denote the Gibbs density (14). Let {ej} be an orthonormal basis of H con-
sisting of eigenvectors of the single-particle operator T , so that Tej = ǫjej.

(i) For each m ∈ N, the limit lim
n→∞

Γn:m(β/n) exists and equals

∑

m:#m=m

{

(

m

m

)
∫

∆d

d
∏

i=0

pmi

i Z−1
β

d
∏

i=0

e−βǫipiλd(dp)
}

P
m

with Z−1
β =

∫

∆d

∏d
i=0 exp(−βǫipi)λd(dp).

(ii) If ǫ0 < ǫ1 ≤ · · · ≤ ǫd, then for each m ∈ N,

lim
n→∞

Γn:m(β) = P(m,0,...,0) = Pe0
⊗m .

Finally, we consider systems with two-particle interactions in the “mean
field” scaling. Let V be a Hamiltonian operator on H⊗H such that V (x⊗
y) = V (y ⊗ x) for all x, y ∈ H. For n > 2, define the Hamiltonian

Hn =

n
∑

i=1

Ti +
1

n− 1

∑

1≤i<j≤n

Vij , (15)

where Vij denotes the operator obtained by applying V to the ith and jth

factors of H⊗n. For any n ∈ N and any β ∈ R, the n-particle Gibbs density
at inverse temperature β for the Hamiltonian (15) is

Γn(β) =
1

Tr(e−βHnΣn)
e−βHnΣn . (16)

Proposition 4 Let Γn(β) denote the Gibbs density (16). For each m, the
limit

Gm = lim
n→∞

{

Γn(β/n)
}

:m

exists and defines a density operator on (Cd+1)⊗n. The de Finetti represen-
tation of Gm is

1

Zβ

∫

∆d

∫

[0,2π)d+1

m times
Pv ⊗ · · · ⊗ Pv e

−β{Tr(TPv)+Tr(V (Pv⊗Pv))/2}σ(dθ)λd(dp)

with v = v(p, θ) as in (11) and

Zβ =

∫

∆d

∫

[0,2π)d+1

e−β{Tr(TPv)+Tr(V (Pv⊗Pv))/2}σ(dθ)λd(dp) .
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The rest of this section is devoted to proving the above propositions.
Recall the definition (9) of the projectors P

n
. For each n ∈ N, let ρn be

an n-particle density

ρn =
∑

n:#n=n

wn(n)P
n
,

where wn is a probability measure on the set {n|#n = n}. Each probability
measure wn can be associated with the discrete probability measure

ωn =
∑

n:#n=n

wn(n)δ(p− 1
n
n)

on the d-dimensional simplex ∆d. It may be verified that

P
n:m =

(

n

m

)−1
∑

m:#m=m

d
∏

i=0

(

ni
mi

)

P
m

(this equals 0 if any mi > ni for any i), and therefore

ρn:m =

(

n

m

)−1
∑

m:#m=m

[

∑

n:#n=n

wn(n)
d

∏

i=0

(

ni
mi

)

]

P
m

=
∑

m:#m=m

(

m

m

)

[

∑

n:#n=n

wn(n)

∏d
i=0

ni

n
(ni

n
− 1

n
) · · · (ni

n
− mi−1

n
)

1(1 − 1
n
)(1 − 2

n
) · · · (1 − m−1

n
)

]

P
m
.

(17)

The coefficient of P
m

in (17) may be written
(

m

m

)
∫

∆d

fn(p)ωn(dp) ,

where

fn(p) = 1l{pi>(mi−1)/n ∀i}(p)

∏d
i=0 pi(pi − 1

n
) · · · (pi − mi−1

n
)

1(1 − 1
n
)(1 − 2

n
) · · · (1 − m−1

n
)
.

The functions fn(p) converge uniformly to
∏d

i=0 p
mi

i on ∆d. Therefore, if ωn
converges weakly to some probability measure ω(dp) on ∆d, then

lim
n→∞

ρn:m =
∑

m:#m=m

(

m

m

)
∫

∆d

d
∏

i=0

pmi

i ω(dp) P
m
. (18)
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The probability measures on ∆d corresponding to the Gibbs density op-
erators (14) for noninteracting bosons are

ωn = Z−1
n,β

∑

n:#n=n

d
∏

i=0

e−βniǫiδ(p− 1
n
n) . (19)

If all of the eigenvalues of T are equal, then the measures (19) converge weakly
to λd(dp), the uniform probability measure on the simplex, but if ǫ0 is strictly
smaller than all of the other eigenvalues of T , then the measures (19) converge
weakly to δ(p − (1, 0, . . . , 0)), a point-mass at the lowest energy vertex of
the simplex. This convergence implies Propositions 1 and assertion (ii) of
Proposition 3 by formula (18). On the other hand, the probability measures
corresponding to the Gibbs density operators Γn(β/n) for noninteracting
bosons are

ωn = Z−1
n,β

∑

n:#n=n

d
∏

i=0

e−βǫini/nδ(p− 1
n
n) ,

and these converge weakly to

Z−1
β

d
∏

i=0

e−βǫipiλd(dp)

with Zβ =
∫

∆d

∏d
i=0 exp(−βǫipi)λd(dp). This proves assertion (i) of Proposi-

tion 3.
To prove Proposition 2, we will show that (12) and (10) are equal. Define

the rank-one operators Qjk(x) = 〈ek, x〉ej . From (11),

Pv(p,θ) =
d

∑

j,k=0

ei(θj−θk)√pjpk Qjk

and therefore Pv(p,θ)
⊗m equals

d
∑

j1,...,jm=0

d
∑

k1,...,km=0

d
∏

r=0

√
pjrpkr

ei(θjr−θkr ) Qj1k1 ⊗Qj2k2 ⊗ · · · ⊗Qjmkm
. (20)

For i = 0, 1, . . . , d, let Ni : {0, 1, . . . , d}m −→ N be defined by

Ni(x1, x2, . . . , xm) = #
{

k ∈ {1, 2, . . . , m} : xk = i
}

10



and define

N(x1, x2, . . . , xm) =
(

N0(x1, x2, . . . , xm), . . . , Nd(x1, x2, . . . , xm)
)

.

If N(j1, . . . , jm) = N(k1, . . . , km) then

∫

[0,2π)d+1

d
∏

r=0

ei(θjr−θkr )σ(dθ) = 1 ,

but otherwise it equals 0. Thus, from (20),
∫

∆d

∫

[0,2π)d+1

Pv(p,θ)
⊗mσ(dθ)λd(dp)

=
∑

m:#m=m

∫

∆d

m
∏

i=0

pmi

i λd(dp)
∑

j1,...,jm:

N(j1,...,jm)=m

∑

k1,...,km:

N(k1,...,km)=m

Qj1k1 ⊗ · · · ⊗Qjmkm

=
∑

m:#m=m

∫

∆d

m
∏

i=0

pmi

i λd(dp)

(

m

m

)

P
m

by the definition (9) of P
m

. This proves Proposition 2.
Finally, we derive Proposition 4 from Proposition 2. Define W = T ⊗ I +

I ⊗ T + V . Then the Hamiltonian (15) can be written

Hn =
1

n− 1

∑

1≤i<j≤n

Wij .

We claim that

lim
n→∞

n−j

TrΣn

{(Hn)
jΣn}:m = 2−j

{

Wm+1,m+2Wm+3,m+4 · · ·Wm+2j−1,m+2jSm+2j

}

:m

(21)

for each j,m ∈ N. This is so because (Hn)
j contains

(

n
2

)j
terms of the form

(n − 1)−jWa1b1Wa2b2 · · ·Wajbj , and, when n is large, the majority of these
terms are such that the indices a1, b1, . . . , aj, bj are all distinct and greater
than m. The sum of the remaining terms in (Hn)

j is o(nj) and does not
contribute to the limit (21). By the symmetry of Σn,

{

Wa1b1Wa2b2 · · ·WajbjΣn

}

:m
=

{

Wm+1,m+2 · · ·Wm+2j−1,m+2jΣn

}

:m

=
{

Wm+1,m+2 · · ·Wm+2j−1,m+2jΣn:m+2j

}

:m

11



if a1, b1, . . . , aj , bj are all distinct and greater than m. There are asymptoti-
cally n2j/2 such terms, so (21) follows from Proposition 1.

Now, to prove Proposition 4, expand

1

TrΣn
e−βn

−1HnΣn =
∞

∑

j=0

1

j!
(−β)jn−j(Hn)

j 1

TrΣn
Σn

and take the mth partial trace:

1

TrΣn

{

e−βn
−1HnΣn

}

:m
=

∞
∑

j=0

1

j!
(−β)jn−j

{

(Hn)
j 1

TrΣn
Σn

}

:m

. (22)

The jth term of the series in (22) converges to

(−1)j
1

j!

(β

2

)j
{

Wm+1,m+2Wm+3,m+4 · · ·Wm+2j−1,m+2jSm+2j

}

:m

as n −→ ∞ by (21) and is bounded by 1
j!
βj‖W‖j uniformly in n. Since

the series in (22) are majorized by the convergent series
∑

j
1
j!
βj‖W‖j and

converge term-by-term as n −→ ∞, it follows that

lim
n→∞

1

TrΣn

{

e−βn
−1HnΣn

}

:m
=

∞
∑

j=0

(−1)j
1

j!

(β

2

)j
{

Wm+1,m+2 · · ·Wm+2j−1,m+2jSm+2j

}

:m
.

(23)
Substituting the integral representations (12) for Sm+2j into (23) yields

lim
n→∞

1

TrΣn

{

e−βn
−1HnΣn

}

:m

=
∞

∑

j=0

1

j!

(−β
2

)j
∫

∆d

∫

[0,2π)d+1

[

Tr
(

WPv(p,θ)
⊗2

)]j
Pv(p,θ)

⊗mσ(dθ)λd(dp)

=

∫

∆d

∫

[0,2π)d+1

e−β
1
2
Tr(WPv(p,θ)⊗Pv(p,θ))Pv(p,θ)

⊗mσ(dθ)λd(dp) .

Proposition 4 follows from the preceding equation and the definition (16) of
Γn(β).
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